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INTRODUCTION

Grazing by herbivores is one of the major processes
structuring benthic coral reef communities. Studies
highlighting the role of herbivores in promoting reef
resilience and recovery to coral-dominated states,

where disturbance has led to increased algal biomass
(e.g. Bellwood et al. 2004), have focused almost
exclusively on fish and sea urchins (Hay 1984a,
Carreiro-Silva & McClanahan 2001, Mumby et al.
2006a, Paddack et al. 2006, Albert et al. 2008).
Numerous Caribbean reefs have transitioned from
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coral to algal-dominated states (Gardner et al. 2003)
following either a dramatic reduction in fish stocks
that limited the distribution, abundance, and produc-
tion of algae (Ogden & Lobel 1978, Hay 1981, Lewis
1986), or the region-wide loss to disease of an impor-
tant echinoid herbivore (Diadema antillarum) in
systems that had previously seen a shift from fish-
dominated to echinoid-dominated herbivory (Lessios
1988, Mumby et al. 2006b). At some locations, in-
creased anthropogenic nutrient loading has further
increased the abundance of primary producers
(Burkepile & Hay 2006, Littler & Littler 2007). Few
studies have looked at the role of green sea turtles
Chelonia mydas in maintaining coral reef resilience.
This is understandable in the Caribbean where green
turtles mostly forage on seagrass (Bjorndal 1980,
Mortimer 1981, Thayer et al. 1984) and thus predomi-
nantly have an indirect impact on the trophodynam-
ics of reef ecosystems (Valentine et al. 2002, Heck &
Valentine 2006, Wabnitz 2010).

In Hawai‘i, situated in the North Pacific, although
the majority of reefs are not as severely impacted as
those throughout the Caribbean region (Brainard et al.
2002, Waddell & Clarke 2008), several locations have
shown increasing signs of stress as a result of mounting
anthropogenic pressures on the coastal zone through
development and runoff, tourism and recreation activ-
ities, and overfishing (Grigg 1994, Hunter & Evans
1995, Friedlander et al. 2008, Williams et al. 2008).
Unlike in the Caribbean region, green turtles in
Hawai‘i feed primarily on algal species that commonly
occur on the reef (McCutcheon et al. 2003, McDermid
et al. 2007, Arthur & Balazs 2008, Russell & Balazs
2009). They may therefore play a direct role in main-
taining the resilience of reef ecosystems. The fact that
green turtles feed on non-native algae, Acanthophora
spp. and Hypnea spp. (Doty 1961, Russell 1992, Russell
& Balazs 1994, Arthur & Balazs 2008, Russell & Balazs
2009), further highlights their contribution to the pro-
motion of reef resilience.

Since turtle harvesting ended in the late 1970s
(Witzell 1994), an approximately linear increase in the
abundance of nesting females has occurred at French
Frigate Shoals (Balazs & Chaloupka 2004a, 2006),
which accounts for >90% of all nesting within the
Hawaiian Archipelago (Balazs 1980). This increase in
abundance is interpreted as a recovery trend because
the Hawaiian nesting population has been continuously
monitored using dependable methodology for several
decades (Balazs & Chaloupka 2004a, Chaloupka et al.
2008) and is considered ‘self-contained’ (Dutton et
al. 2008). Population trends at a number of foraging
grounds that also have been subject to long-term mon-
itoring seem to mirror this trajectory (Chaloupka &
Balazs 2007).

An understanding of the ecological role of green
turtles as grazers on reefs requires a process-oriented
approach that assesses, preferably quantitatively,
the relative contributions of all herbivore functional
groups (i.e. fish, sea urchins, and green turtles). Such
an approach is currently lacking, though it may pro-
vide significant insights into the need for, and conse-
quences of, improved turtle conservation and manage-
ment.

Ecological modeling has developed ways to mathe-
matically describe the complexity and non-linear
behavior of ecological systems. Ecopath with Ecosim
is a freely available, widely used software for descri-
bing the structure of ecosystems and their food webs.
It was recently named as one of the 10 major scientific
breakthroughs in the 200 yr history of the US
National Oceanographic and Atmospheric Administra-
tion (NOAA; see http://celebrating200years.noaa.gov/
breakthroughs/welcome.html). Rather than providing
outputs at the population level of biological organiza-
tion, typical of many models, the Ecopath with Ecosim
approach provides outputs at the ecosystem level, re-
flecting food-web linkages, energy cycling, and changes
in biomass of each species group defined in the model
(Christensen 2008). Although determining carrying
capacity of a system has been highlighted as one of the
uses of this software, few studies have explored this
aspect through the use of Ecopath with Ecosim (but see
Christensen & Pauly 1998).

We developed an Ecopath trophic model to investi-
gate the role that green turtles play in the coral reef
ecosystem of Kaloko-Honoko–hau National Historical
Park (Kaloko). Located on the west coast of Hawai‘i
Island (the ‘Big Island’; Fig. 1), the park supports a
healthy and relatively diverse coral habitat with little
evidence of non-native species of macroalgae or dis-
eased coral (Gibbs et al. 2007). It has low fish biomass,
but high fish diversity (Parrish et al. 1990, Beets et al.
2010). The park also has a resident foraging popula-
tion of immature green turtles that has been the sub-
ject of a mark–recapture study by the NOAA National
Marine Fisheries Service and the US National Park
Service since 1999. Three lines of evidence suggest
that this foraging population has reached carrying
capacity: (1) The significant increase in green turtle
abundance throughout the archipelago over the last 10
to 20 yr has been associated with a significant decrease
in somatic growth rates at many foraging grounds
around the Main Hawaiian Islands, including the west
coast of the Big Island (Balazs & Chaloupka 2004b),
possibly the result of density dependence (Bjorndal et
al. 2000); (2) Field measurements of body volume and
mass as an index of body condition have shown that
turtles at foraging locations near Kaloko have lower
body condition indices than green turtles at other sites
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on the Island of Hawai‘i (Kubis et al. 2008); and (3)
Recent necropsy reports cite emaciation as a probable
contributor in the death of a number of green turtles
found stranded at foraging locations along the west
coast of the Hawai’i Island (or Kona Coast) (Work 2007,
2008a,b).

The trophic model is also intended as a ‘baseline’ of
ecosystem state for Kaloko prior to major develop-
ments projected for areas around the park. Concern
has been expressed over the future health of Kaloko’s
coastal resources given proposed plans for the devel-
opment of lands adjacent to the south boundary of the
park, including a 300% expansion of a small-boat har-
bor, and construction of hotels, condominiums, and a
light industrial park (Gibbs et al. 2007). Expected
impacts include a reduction in groundwater flow, an
important feature at Kaloko, with a concomitant in-
crease in groundwater loads of sediment, nutrient, and
chemical pollutants (Oki et al. 1999, Paytan et al. 2006,
Johnson et al. 2008).

The goals of this study were therefore 3-fold: (1) To
develop an ecosystem model of the marine portion of
the park, synthesizing available data and describing
the ecological structure and processes of the reef sys-

tem at Kaloko; (2) To ascertain whether Kaloko green
turtles are at carrying capacity, by determining whether
grazing by green turtles and other reef herbivores
matches overall algal production; (3) To provide the
management community with a tool that can simulate
the effects of increased urban development in the
Kaloko area, as well as compare the outcomes of a
range of potential management scenarios.

MATERIALS AND METHODS

Study area. Kaloko-Honoko–hau National Historical
Park was established in 1978 and spans 5.17 km2, of
which 2.48 km2 is marine (Gibbs et al. 2007). The park
is bordered to the south by the Honoko–hau Small-Boat
Harbor, and there are large scale industrial/commer-
cial developments to the east. The terrestrial portion
includes more than 180 anchialine (brackish) pools,
2 large ponds and wetlands modified for fish produc-
tion by early Hawaiians, and a fish trap (Kaloko,
‘Aimakapa– and ‘Ai’o–pio respectively; Fig. 1). The
coastal waters and reefs of Kaloko are within the West
Hawai‘i Fisheries Management Area and are currently
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Fig. 1. Kaloko-Honoko–hau National Historical Park (Kaloko), located on the west coast of the Big Island, Hawai’i, USA
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managed by the State of Hawai‘i. The legislated park
boundary extends offshore for about 1000 m at the
widest point and to maximum depths of ca. 70 m (Par-
rish et al. 1990). Past this boundary the seabed drops
off to depths >180 m. Approximately 73% of the
marine section of the park is hardbottom. The remain-
ing 27% comprises unconsolidated sediment and arti-
ficial/historical features. Most of the hardbottom area
has 10 to <50% coral cover, and ca. 12% has 50 to
100% coral cover (Gibbs et al. 2007). Benthic habitats
are considered relatively healthy, with no signs of dis-
eased corals or non-native algal species (Marrack et al.
2009, Weijerman et al. 2009). Low sedimentation rates
and the presence of relatively high coral cover in pro-
tected locations suggest that currently, the reef habitat
in Kaloko is primarily controlled by natural wave-
induced stresses (DeVerse 2006).

Modeling approach. We used Ecopath with Ecosim
(EwE), software version 5.1.208 (Christensen & Walters
2004, Christensen et al. 2005, www.ecopath.org). The
Ecopath component of any EwE model provides a
quantitative representation of an ecosystem for a
defined time period. In other words, it is a snapshot of
the resources in an ecosystem and their interactions,
represented by trophically linked mass-balanced bio-
mass ‘pools’ (Polovina 1984, Christensen & Pauly 1992).
The biomass pools, hereafter referred to as functional
groups, consist of a single species, or species groups
representing ecological guilds. The idea behind the
mass-balance approach is that ‘at any time within the
system, and within the elements of that system, the
amounts of matter that flow in must balance the
amount that goes out plus the change in biomass’
(Pauly & Christensen 2002 p. 215). Ecopath therefore
operates under 2 main assumptions:
(1) That biological production within a functional
group equals the sum of mortalities (i.e. on an annual
basis, biomass and energy in an ecosystem are con-
served; Walters et al. 1997, Walters & Martell 2004).
This relationship can be expressed as follows:

(1)

where Bi and Bj are biomasses of prey (i) and predator
(j), respectively; (P/B)i is the production to biomass ra-
tio, equivalent to total mortality (Z) under most circum-
stances (Allen 1971); (Q/B)j is the food consumption per
unit biomass of (j); DCji is the fraction of prey (i) in the
average diet of predator (j); Yi is the total fishery catch
rate of group (i); Ei is the net migration rate (emigration
– immigration); BAi is the biomass accumulation rate of
group (i); and EEi is the ecotrophic efficiency, defined
as the fraction of production that is consumed within
the system or is removed by fishers; and

(2) That consumption within a group equals the sum of
production, respiration, and unassimilated foods. This
relationship can be expressed as follows:

(2)

where GS is the proportion of unassimilated food, and
TM is the trophic mode expressing the degree of het-
erotrophy of groups represented within the system,
with 0 representing autotrophs, 1 heterotrophs, and
intermediate values facultative consumers.

Ecopath then uses a set of algorithms to simultane-
ously solve n linear equations of the form in Eq. (1),
where n is the number of functional groups. For each
functional group, 3 of the basic parameters: Bi, (P/B)i,
(Q/B)i or EEi must be known, in addition to the fisheries
yield (Yi), and the diet composition. Units of the model
are expressed in t km–2 yr–1 wet weight for flows and
t km–2 wet weight for biomasses. Production per unit
biomass (P/B ) and consumption per unit biomass (Q/B)
have the dimension yr–1. For a review of EwE’s capabil-
ities and limitations see Christensen & Walters (2004),
Plaganyi & Butterworth (2004), and Plaganyi (2007).

To balance the model, changes were first made to
the diet matrix, as diet compositions represent only
snapshots of the feeding habits of individual species
and are likely to be relatively variable based on loca-
tion and time periods of data collection. The model
required only minor adjustments and was considered
balanced when: (1) The model produced realistic
ecotrophic efficiencies (EE< 1); (2) Values of the pro-
duction to consumption ratio (P/Q) for functional
groups were between 0.05 and 0.35, with the excep-
tion of groups with fast growth rates (higher ratios),
and top predators (lower values) (Christensen et al.
2005).

Model parameters and functional groups. The
model represented an annual average situation of
ecosystem conditions in the marine portion only (i.e. to
the exclusion of the anchialine pools, fish ponds, and
fish traps) of Kaloko in 2005. We defined a total of 26
functional groups, 8 of which were fish, spanning the
main trophic components of the ecosystem (including
detritus; Table 1, Fig. 2). The 8 fish groups represented
the aggregation, based on ecological and biological
similarities (e.g. diet, size, habitat, mortality), of 106
fish species recorded during underwater visual census
studies (Beets et al. 2010; see Table S1 in the supple-
ment at www.int-res.com/articles/suppl/m420p027_
supp.pdf).

Biomass estimates for individual species were based
on values from field studies, local expert opinion, or
from the literature. For species with data reported only
from selected habitats, biomass values were extra-
polated to the entire park by calculating an area-
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weighted biomass for each species relative to the pro-
portion that each benthic habitat category covered
within park waters (the latter based on Gibbs et al.
2007). For instances where P/B was equal to only nat-
ural mortality (M), estimates were taken directly from
the literature, or derived using the empirical formula of
Pauly (1980). For exploited species, fishing mortality
values were based on Friedlander & Parrish (1997) (see
below). Where possible, the consumption rate for each
functional group was obtained through field studies;
otherwise it was estimated from empirical equations
such as those available in FishBase (www.fishbase.org)
for all finfish. The diet matrix was constructed using
data from field studies in Hawai‘i, preferentially the
west coast of the Big Island. Where no such data were
available, the matrix was complemented with informa-
tion obtained from the literature for the same species in
similar ecosystems. Details of data sources and estima-
tion methods for all parameters are given in Table S2
in the supplement.

Fisheries. Kaloko’s waters were designated as a Fish
Replenishment Area on 31 December 1999, effectively
banning the harvest of live reef fish for the aquarium
trade, in response to declines of species targeted by

collectors (Tissot et al. 2004). Biomass of targeted spe-
cies may have responded to the closure, and because
fishing pressure for ornamentals has been removed,
P/B was set to M for all formerly collected species.

The park is a popular location for subsistence fishing
and shoreline gathering, traditional activities that are
permitted as long as they are consistent with state law
and park mandates (i.e. with legal fishing gear for per-
sonal consumption; DeVerse 2006). Harvesting is done
primarily from shore using several methods, such as
throw nets, spear, and pole and line fishing. Gill, or
‘lay’ netting, a serious threat to marine resources in-
cluding marine mammals and sea turtles, was re-
stricted within park waters in August 2005 to locally
constructed, handmade nets of natural fibers. The
State of Hawai‘i does not have recreational and subsis-
tence permitting or reporting requirements (Friedlan-
der & Parrish 1997), despite surveys in the late 1980s
indicating that 19 to 35% of residents fish (Smith 1993),
and recent studies concluding that these fisheries dom-
inate the catch of coral reef species (Zeller et al. 2005,
Williams et al. 2008). Although several studies con-
ducted throughout the Hawaiian Archipelago have as-
sessed the importance of fishing impacts on coral reef
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Table 1. Trophic parameters for all functional groups of the balanced Kaloko model. Model outputs are presented in bold.
B: biomass; TL: trophic level; P/B: productivity to biomass ratio; Q/B : consumption rate; EE: ecotrophic efficiency; P/Q: pro-
duction to consumption ratio or gross efficiency; P/R: production to respiration ratio; MIF: mobile invertebrate feeders; SIF: 
sessile invertebrate feeders; Zoo: zooplanktivorous species; CCA: crustose coralline algae; turfLB: turf algae growing on the

nearshore lava bench

Group name TL B P/B Q/B EE P/Q P/R Catch
(t km–2) (yr–1) (yr–1) (t km–2 yr–1)

1 Spinner dolphins 3.21 2.7400 0.151 11.519 0.007 0.013 0.017 –
2 Monk seals 3.89 0.1790 0.121 11.508 0.033 0.011 0.013 –
3 Sea birds 3.17 0.0024 0.127 76.515 0.012 0.002 0.002 –
4 Rays 3.15 4.2330 0.200 3.100 0.002 0.065 0.065 –
5 Sharks and jacks 3.53 0.0700 1.058 5.100 0.453 0.207 0.350 0.030
6 Hawksbill sea turtles 3.18 0.0540 0.100 3.500 0.066 0.029 0.029 –
7 Green sea turtles 2.00 1.5910 0.109 6.764 0.039 0.016 0.021 –
8 Reef fishes - piscivores 3.39 1.7295 0.615 6.121 0.527 0.100 0.144 0.003
9 Reef fishes - herbivores 2.02 20.3350 1.400 27.149 0.205 0.052 0.069 0.162
10 Reef fishes - corallivores 2.60 0.5417 2.100 12.918 0.547 0.163 0.255 –
11 Reef fishes - detritivores 2.00 2.2598 1.900 32.272 0.282 0.059 0.079 0.018
12 Reef fishes - MIF 3.13 9.7610 0.950 8.108 0.394 0.117 0.172 0.130
13 Reef fishes - SIF 2.84 0.5440 1.700 9.581 0.224 0.177 0.285 –
14 Reef fishes - Zoo 2.85 3.0460 1.450 13.378 0.585 0.108 0.157 0.004
15 Urchins 2.00 280.0000 0.484 8.547 0.056 0.057 0.076 –
16 Crown of thorns 2.59 0.1170 0.411 9.000 0.007 0.046 0.061 –
17 Benthic invertebrates 2.18 42.5381 2.910 15.250 0.950 0.191 0.313 –
18 Corals 1.58 130.0000 0.140 2.100 0.594 0.067 0.075 –
19 Octocoral 2.07 2.9000 0.200 4.630 0.484 0.043 0.054 –
20 Macroalgae 1.00 22.6910 9.824 – 0.925 – – –
21 CCA 1.00 37.8180 1.770 – 0.358 – – –
22 Turf algae 1.00 128.7800 19.000 – 0.942 – – –
23 TurfLB 1.00 3.0650 25.000 – 0.921 – – –
24 Zooplankton 2.02 1.2400 219.000 949.000 0.979 0.231 0.625 –
25 Phytoplankton 1.00 3.2900 325.458 – 0.984 – – –
26 Detritus 1.00 100.0000 – – 0.694 – – –
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fish assemblages (e.g. Tissot et al. 2004, 2009, Williams
et al. 2008, the Hawai’i Division of Aquatic Resources
(DAR) unpubl. data in Weijerman et al. 2009), few data
exist to quantify fishing mortality along the western
shores of the Big Island. In the absence of catch or ef-
fort data specific to Kaloko, we assumed catch data to
standing stock proportions in the park to be com-
parable to those in Hanalei Bay, Kauai (Friedlander &
Parrish 1997), and adjusted values to reflect species
known to be targeted at Kaloko. As no data were avail-
able on macroinvertebrates in Kaloko (with the excep-
tion of sea urchins), nor information regarding whether
fishing occurs on those groups in the park, no catch
was allocated to the ‘benthic invertebrates’ functional
group.

We divided existing fisheries into 2 ‘fleets,’ one tar-
geting ‘sharks and jacks’ specifically, and a recre-
ational/subsistence fishery representing fishers oper-
ating mainly from shore, and targeting small reef fish.
We calculated the ratio of catch to standing stock for
fish families targeted by fishers from Friedlander &
Parrish (1997), and doubled them, given that fishing
pressure is likely to be higher now than it was in 1997
(DAR unpubl. data in Weijerman et al. 2009). We then
applied these indices to fish families harvested in
Kaloko (E. Brown unpubl. data). For species groups
targeted in Kaloko, but for which data were not avail-
able from Friedlander & Parrish (1997), we applied
the same value as for fish families in the same func-
tional group. Fishing mortality for individual species/

functional groups was calculated using F = catch/
biomass.

Model analysis, indices, and uncertainty around
input data. We quantified total trophic flows within the
ecosystem in terms of consumption, production,
respiration, exports and imports, and flow to detritus
(t km–2 yr–1). We then used ecological indices as
obtained through ecological network analysis (ENA) to
evaluate the food web (Wulff et al. 1989, Christensen &
Pauly 1993). ENA is a modeling technique used for
understanding the structure and flow of material
between components of an ecosystem (Ulanowicz
1997). As integrated in Ecopath, ENA allows for the
calculation of ecosystem macro-descriptors that quan-
tify trophic structure, organic matter recycling,
and ecosystem size and organization. These descrip-
tors include total system throughput, ascendency,
development capacity, and the relative overhead.
Throughput describes the size of a system and repre-
sents a measure of its metabolism (Christensen & Pauly
1993). Ascendency integrates both size and organiza-
tion of a given system (Christensen 1995). The devel-
opment capacity (C) quantifies the upper limit to
ascendency, whereas the system’s overhead (O) is
complementary to the ascendency and measures the
level of ‘redundancy’ of particular links (Heymans
2003). The relative overhead (O/C ratio) was proposed
by Heymans (2003) as an index of the resilience of the
system (i.e. an index of the system’s ability to with-
stand disturbance; Ulanowicz 1997). ENA further
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Fig. 2. Trophic flows within the Kaloko reef ecosystem. Each functional group is identified here by an illustration (© M. Bailey);
where relevant, an image of a species representative of its guild is depicted. Images are not drawn to scale or proportional to the
group’s biomass. The light grey horizontal lines and associated numbers represent trophic levels; lines connecting individual
functional groups represent trophic links. Zoo: zooplanktivorous reef fish; MIF: mobile invertebrate feeding reef fish; SIF: sessile
invertebrate feeding reef fish; TurfLB: turf algae growing on the nearshore lava bench; CCA: crustose coralline algae; Benthic

Invts: benthic invertebrates
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allows the derivation of transfer efficiencies (TE), sum-
marizing the proportion of consumption that is passed
up a food web. The TE is the ratio between the pro-
duction of a given trophic level and the preceding
trophic level (Pauly & Christensen 1995). Finally, we
ran the mixed trophic impact (MTI), or ecological
input-output, analysis (Ulanowicz & Puccia 1990),
which describes how any functional group impacts,
directly and indirectly (i.e. both predatory and compet-
itive interactions), all other functional groups within
the food network. In other words, this analysis provides
a first-order quantification of the beneficial and nega-
tive impacts of one functional group on another (scaled
between –1 and 1). The MTI for living groups is calcu-
lated by constructing an n × n matrix, where the inter-
action between the impacting group (j) and the
impacted group (i) is represented as follows (Chris-
tensen & Walters 2004):

(3)

where DCji, as in Eq. (1) above, is the diet composition
term expressing how much (i) contributes to the diet of
predator (j), and FCij is a host composition term giving
the proportion of the predation on (i) that is due to (j).
For detritus groups, the DCji term in Eq. (3) above is set
to 0.

Any ecosystem model realization requires acknowl-
edging the large amount of data required in its develop-
ment, and the difficulty in quantifying the flows between
the food web’s individual functional groups. Functional
group dynamics can be verified by fitting model data to
actual population trends over time. Such time series data
do not exist for Kaloko. To address model uncertainties,
probability distributions for all Ecopath input parameters
were entered through the ‘pedigree’ (Funtowicz &
Ravetz 1990) function of Ecopath (Pauly et al. 2000). Us-
ing a Monte Carlo re-sampling routine, the ‘Ecoranger’
module of Ecopath draws random input variables from
within the confidence intervals defined for each parame-
ter type in the pedigree tables and uses these as prior
probability distributions for all input data. This approach
leads to a large number of model realizations that are
evaluated for their conformity to user-defined criteria as
well as physiological and mass-balance constraints. The
results include probability distributions for the estimated
parameters along with distributions of parameters in the
accepted model realizations. This routine can be run for
the model overall, as pedigrees are associated with all in-
put parameters. However, given our primary goal to de-
termine whether green turtles are at carrying capacity at
Kaloko we focused on sources of uncertainty associated
with: estimates of green turtle biomass, P/B, and Q/B; the
proportion of sea urchins’ diet that was derived from turf
algae growing on the nearshore lava bench (turfLB); and
variability associated with turfLB biomass and P/B.

RESULTS

Trophic parameters and the diet matrix for the
26 groups of the final balanced Ecopath model for
Kaloko are presented in Tables 1 & 2. Trophic flows
between all functional groups are depicted in Fig. 2.
Sea urchins (Tripneustes gratilla, Echinometra math-
aei, Heterocentrotus mammilatus, and Echinothrix
spp.) accounted for the largest proportion of total living
biomass in the system (40%). Green turtles and reef
fish groups, including ‘sharks and jacks,’ only repre-
sented 0.2 and 5.5% of total biomass, respectively.
Reef fish functional groups were dominated by herbiv-
orous and mobile invertebrate feeding species. Not
surprisingly, consumption by sea urchins had the
biggest impact (45%) on available resources at Kaloko,
whereas fish accounted for 14.4% and green turtles for
0.2% of total consumption. Total fisheries catches
represented less than 1% of total fish biomass
(Table 1). Sharks and jacks were caught in larger
quantities compared with their relatively low biomass
in the assemblage. Mean trophic level of the total fish-
eries catch was 2.59 (Table 3).

Ecotrophic efficiency (EE) values (the proportion of a
functional group’s production used within the system)
were lowest for some of the highest trophic levels,
including ‘spinner dolphins,’ ‘monk seals,’ and ‘sea
birds,’ as well as ‘crown of thorns starfish,’ ‘hawksbill
turtles,’ ‘green turtles,’ ‘sea urchins,’ and ‘corals’
(Table 1). For the first 3 groups, this valuation is due to
these species deriving a significant proportion of their
food from outside park waters. They were included
chiefly to ensure that the model was representative of
the system at Kaloko (i.e. to acknowledge that these
species occur in the park, and may at some point in the
future suffer from indirect effects of park development,
even if they do not feed exclusively or primarily in park
waters). For the 5 other groups, the low EE values are
a result of low predation and fishing pressure being
exerted on these species. Fish groups, overall, also had
relatively low EE values, with higher values registered
by those species pools that were subject to higher fish-
ing mortality. This valuation suggests that the system
generates a reasonable amount of surplus secondary
production. Indeed, the largest component of the mor-
tality coefficients within the system was due to preda-
tion mortalities, with the exception of ‘sharks and
jacks,’ for which the fishing mortality rate was greater
than predation mortality. In contrast, most of the pro-
duction by the macro- and turf algal groups, ‘zoo-
plankton,’ ‘benthic invertebrates,’ and ‘phytoplankton’
was accounted for through consumption by other
trophic groups within the model (EE > 90%). In other
words, sea urchins, herbivorous fish, and green turtles
maintained all algae at Kaloko in a cropped state.

MTIji ji ijDC FC= −
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Reef-building corals, octocorals, benthic invertebrates,
and zooplanktivorous fish were the main predators
of zooplankton, while zooplankton consumed most of
the phytoplankton production in the system. Benthic
invertebrates were preyed upon mostly by MIF reef
fish and species within the benthic invertebrate group
itself.

Throughput (total flows) values for each functional
group highlighted the importance of turf algae, zoo-
plankton, phytoplankton, and sea urchins in system
structure. The high EEs attained for all algal groups
indicated that the system was at carrying capacity with
respect to grazing, including for green turtles. The pri-

mary producers’ high EEs were also
reflected in the low production/respira-
tion ratio of 1.12 for the system overall
(Table 3).

Focusing on green turtles, urchins,
and herbivorous reef fish in the system
only, the MTI routine highlighted the
resource competition both within and
among all 3 groups (Fig. 3). Sea urchins
were responsible for the largest among-
group effect, impacting negatively on
both herbivorous reef fish and green
turtles, and overall had the largest
impact on algal and detrital resources
(not shown). Given green turtles’ feed-
ing preference on turfLB, they were the

group most impacted by changes in turfLB (Fig. 3).
When accounting for the uncertainty around para-

meters affecting consumption of turfLB, EE values of
turfLB in successfully balanced model runs ranged
between 0.416 and 0.998.

The mean TE in the ecosystem as a whole was
4.6%, with a value of 4.5% for flows originating from
primary producers and 4.7% from the detritus. This
low efficiency was due to consumption dominating
total system throughput for the lower trophic levels,
whereas respiration and flow to detritus dominated
the higher trophic levels in the model (Fig. 4). This
result is to be expected in a system with low biomass
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Table 3. Summary of outputs from the ecological network analysis (ENA)

Sum of all consumption 5332.03 t km–2 yr–1

Sum of all exports 520.07 t km–2 yr–1

Sum of all respiratory flows 3477.31 t km–2 yr–1

Sum of all flows into detritus 1700.15 t km–2 yr–1

Total system throughput 11030.00 t km–2 yr–1

Calculated total net primary production 3895.09 t km–2 yr–1

Total primary production/total respiration 1.12
Total biomass (excluding detritus) 699.53 t km–2

Total catches 0.35 t km–2 yr–1

Mean trophic level of the catch 2.59
Throughput cycled (excluding detritus) 54.52 t km–2 yr–1

Finn’s cycling index 6.13 % of total throughput
Ascendency 31.50 %
Relative overhead (O/C) 68.50 %
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at the highest trophic levels. Some upper trophic
level species, such as trevally (also locally known as
‘ulua’ or ‘jacks’), are highly vagile. As a consequence,
although not being heavily fished for in park waters,
their abundance may still be depressed due to high
fishing pressure along the remainder of the Kona
Coast. Ascendancy was 31.5% of capacity and rela-
tive overhead was 68.5% (Table 3), 46% of which
was attributable to internal flows, indicating that the
system contains a number of ‘redundant’ trophic link-
ages. These observations are consistent with a system
exhibiting relatively high resilience to perturbation
with respect to energy flows, or a high system stabil-
ity sensu Odum (1971).

Net primary productivity was 3895 t km–2 yr–1 and
was accompanied by a high flow to the detritus pool
(Table 3). Turf algae (including turfLB) and phytoplank-
ton accounted for 57 and 24% of total production in the
system, or 65 and 27% of total primary production, re-
spectively. Sea urchins (38%) were the major contribu-
tor to the detrital pool, followed by zooplankton (28%),
while the combined fish groups (mainly herbivores)
contributed 11% of all flows to the detritus. The ratio
between primary production and respiration (PP/R)  in-
dicates that the system was at a low developmental
stage sensu Odum (1969, 1971). This finding was cor-
roborated by the low Finn’s cycling index, showing
that only a small fraction of the throughput (including
detritus) was recycled (6%; Table 3). The proportion of
flows originating from the detritus was 0.27%.

The overall pedigree (i.e. ‘quality’) index of the
model (0.539) was high in comparison to 50 other mod-
els for which pedigree values ranged between 0.164
and 0.676 (Morissette 2007).

DISCUSSION

Description of the Kaloko reef system

Quantitative descriptions of the flux of matter and
energy can provide significant insights into the funda-
mental structure of ecosystems. The Kaloko system is
dominated by primary production (PP), 27% of which
is contributed by phytoplankton and 65% by algal
turfs, which is slightly lower than other published
estimates for primary producers in tropical systems
(e.g. Wanders 1976, Adey & Steneck 1985, Adey &
Goertemiller 1987). The trophic networks at Kaloko
were dominated by grazing, with herbivores account-
ing for 43% of all living biomass within the system, of
which 93% was sea urchins. This grazer dominance
was further highlighted by the high EEs achieved for
the main PP functional groups, including phytoplank-
ton. Results from rapid assessment surveys throughout
the State confirm that sea urchins in particular, and
herbivorous fish, are common on reefs in Hawai‘i
(Rodgers et al. 2004). In contrast, relatively low EEs of
higher trophic level functional groups indicate that the
foraging activities of herbivores are not limited by pre-
dation pressure, as demonstrated by our analysis of
total system throughput (Fig. 4). Indeed, few predators
commonly occur in the park, and fewer still have been
observed feeding in the park. Therefore, as high-
lighted by the model’s average TE of 4.6%, much
lower than the mean of 10% obtained for various other
ecosystems (Christensen & Pauly 1993), only a small
proportion of production is being transferred up the
food chain. Comparison between 2 sets of underwater
visual census data (E. Brown & National Park Service
unpubl. data) showed a 5-fold increase in piscivore
biomass between 2005 and 2007. This inter-annual
difference may have been due to real differences
between the 2 datasets, possibly reflecting the restric-
tions on gillnetting in park waters implemented in
August 2005. Differences in species biomass and com-
position may also reflect either variability in survey
accuracy for species displaying vagile (e.g. Caranx
melampygus) or cryptic behavior (e.g. Gymnothorax
flavimarginatus, G. meleagris, Cephalopholis argus),
or seasonal changes (Friedlander & Parrish 1998,
Vitousek et al. 2009), as the 2005 and 2007 datasets
were collected in April and October, respectively.
Future surveys should therefore focus on good intra-
annual coverage to represent seasonal variation.

Phytoplankton and zooplankton had some of the
highest EEs. The waters around Hawai‘i are generally
oligotrophic (Bienfang et al. 2009), and consequently
low biomass of phytoplankton and zooplankton is to be
expected. Reef environments along the Kona coast are
close to the deep slope of the Pacific and subject to
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Fig. 4. Fate of total system throughput (A: respiration, B: flow
to detritus, C: export, D: consumption by predator) in percent-

age-per-integer trophic level
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strong wave action and currents along the shore
(Presto et al. 2007). Therefore, we assumed that zoo-
planktivores on the reef derive a substantial portion of
their diet from open-ocean plankton. We further
assumed that ocean plankton contributes to the energy
intake of benthic invertebrates and other functional
groups that feed on plankton. Experiments should be
conducted to ascertain the proportion of ocean plank-
ton in the diet of reef organisms at Kaloko, or other
similar systems in Hawai‘i.

At 42.54 t km–2, the model’s benthic invertebrate
(excluding sea urchins) biomass was similar to esti-
mates provided for models in Raja Ampat, Indonesia
(51.68 t km–2; Ainsworth et al. 2007), and the Great
Barrier Reef, Australia (61.41 t km–2; Tudman 2001),
but substantially lower than estimates for barrier
reefs and fringing reefs in Moorea, French Polynesia
(198.26 and 322.8 t km–2 respectively; Arias-González
1994, Arias-González et al. 1997). Few studies have
investigated the composition of benthic invertebrates
on reefs, yet they are an important prey for certain
groups of reef fish (e.g. Hobson 1974) and can repre-
sent an important fishery (Friedlander & Parrish 1997).
Given that benthic invertebrates accounted for 6% of
total system biomass, species composition and their
relative contribution to total group biomass of the
benthic invertebrate community of Kaloko should be
determined.

Sea urchin densities at Kaloko (ca. 5 ind. m–2 for
Echinometra mathaei and <1 ind. m–2 for all other spe-
cies) were comparable to sea urchin densities recorded
on reefs throughout the State of Hawai‘i (Rodgers et
al. 2004) and similar to, or lower than, those reported
from other reef locations, e.g. 5 to 6.8 ind. m–2 (chiefly
E. mathaei and Tripneustes gratilla) at La Réunion
(Naim et al. 1997) and 2 to 4 ind. m–2 (Echinometra) in
Fiji (Appana & Vuki 2006). Current sea urchin densi-
ties at Kaloko are also comparable to those recorded in
the 1970s (Ebert 1971). These similarities suggest that
high sea urchin densities are natural and do not re-
present a release from predation pressure due to in-
creased fishing pressure in the last 30 yr, as noted at a
number of locations along the coast of Kenya (Muthiga
& McClanahan 1987, McClanahan 1998).

Turtles at carrying capacity

Green turtles are at carrying capacity at Kaloko
based on (1) their biomass estimates and consumption
rates, (2) estimates of turfLB as well as the primary pro-
duction rates of these algae, and (3) the high degree to
which sea urchins feed on the green turtles’ main food
resource. Balanced model outputs under Ecoranger,
taking into account the uncertainty surrounding these

input parameters, showed that the EE of turfLB could
range between 0.416 and 0.998. Specifically, it reflects
the wide range in published biomass and mass-specific
productivity rates for turf algae. For example, biomass
was found to vary between 230 g m–2 (T. Sauvage pers.
comm.) and 600 g m–2 (Smith et al. 2001) in Hawai‘i
alone, 78 g m–2 in the Solomon Islands (Albert et al.
2008), and 850 g m–2 in the Caribbean (Bruggemann et
al. 1994). Even greater ranges in productivity have
been recorded for the different algal groups that
constitute ‘turf,’ particularly in relation to depth and
seasonal cycles (Payri 2000). An evaluation of algal turf
productivity and consumption rates by green turtles at
Kaloko would help refine the estimates presented here.

Results from the MTI analysis highlighted the strong
competition for the same resource between sea
urchins, herbivorous reef fish, and green turtles. Graz-
ing pressure exerted by herbivorous fish does not
occur uniformly on a reef. Grazing may be reduced in
places where reef structure affords little refuge from
predation (Lewis 1986). However, this may not be a
significant factor at Kaloko where overall predation
pressure is limited due to the low abundance of pisci-
vores. Foraging efficiency may also be reduced on
shallower portions of the reef due to relative high wave
intensity and potential exposure of animals when
water levels are low. We therefore assumed that fish at
Kaloko graze chiefly on reef turf algae rather than on
turfLB specifically (Table 2). Recent evidence from the
South Pacific demonstrates that few of the fish species
previously classified as ‘herbivores’ are indeed exclu-
sively herbivorous (Choat et al. 2002, Cvitanovic et al.
2007). Many appear to predominantly feed on detritus,
only incidentally removing turf from the reef in the
process (Crossman et al. 2001, 2005). Data on the
extent of algae removed but not consumed are needed
to correct our current assumption that all algal material
removed by herbivorous fish was ingested. MTI results
reflected resource competition between turtles and
fish primarily for macroalgae, which appeared ‘magni-
fied’ as macroalgae biomass overall in the park is low.
As sea urchins occur in the shallows (M. Weijerman
pers. comm., L. Marrack pers. comm.), probably emer-
ging at night to feed (Mills et al. 2000, Vaitilingon et al.
2003), a small proportion of turfLB was included in the
echinoids’ diet matrix (Table 2). Quantification in the
field of this overlap and the extent to which relative
densities among the 3 herbivore functional groups may
change with time would help refine carrying capacity
estimates for green turtles. Clarification of the extent to
which sea urchins feed on turfLB also has implications
for their role in maintaining low algal biomass levels
in the face of increased nutrient input associated with
urban development activities around the park (see
below).
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Observations that Kaloko green turtles appear
unusually ‘skinny’ (Kubis et al. 2008) and exhibit low
growth rates (Balazs & Chaloupka 2004b) compared
with turtles at a number of other Hawaiian foraging
grounds support input parameters within the range
used in our model (Table 1). A key difference between
individual foraging sites that may help explain varia-
tions in observed growth rates is that green turtles at
Kaloko forage on turf, the dominant algal group on the
central Kona Coast, whereas other foraging grounds
throughout the Hawaiian Archipelago have macroal-
gae available as forage (Arthur & Balazs 2008). Until
recently, turtles tagged at Kaloko were rarely found
outside of park waters, and therefore it is unlikely they
were obtaining food from outside the modeled area.
However, new observations have indicated a behav-
ioral shift in the green turtles’ foraging patterns. Fewer
individuals are utilizing the shallow reef area in the
summer months than they did prior to ca. 2006 (S.
Beavers unpubl. data). More human interactions, re-
sulting from recent increases in visitors to the park,
may be partly responsible for this change in behavior
(S. Beavers unpubl. data). Greater turtle movement
possibly away from Kaloko further strengthens the
case for carrying capacity having been reached at the
park because of limited available forage.

Turf algae growing on the lava bench close to shore
and in the intertidal area were included in the model
as a separate functional group, as resident green tur-
tles at Kaloko have been seen to concentrate their
grazing on this portion of the park. Such focused forag-
ing behavior may occur for 3 reasons:

(1) By focusing their feeding activities on shallow
portions of the reef, individuals exert less effort forag-
ing, as the lava bench supports a highly productive
algal mat that can grow unrestricted by space compe-
tition with live coral. Were turtles to forage on deeper
sections of the reef, for a similar intake of algae, ani-
mals would have to roam over wider areas and pick
algae from in and around coral heads, resulting in
greater energy expenditure. More energy would also
have to be expended by animals in having to come to
the surface to breathe. Our results, corroborated by
local observations of turf algae throughout the park
being closely cropped (F. Parrish pers. comm.), indi-
cated that the system was also close to carrying capac-
ity for overall turf algae, making foraging by green tur-
tles in deeper reef sections even less energy efficient.
‘True’ carrying capacity of turf algae on the reef may
actually be realized at lower EE values, because where
turf algae are laden with sediment, much of the algae
may not be available to grazers.

(2) Green turtles may prefer to forage on the lava
bench because of the protection afforded by the
shallows against predation by tiger sharks. Sharks are

regularly sighted at Kaloko (e.g. see www.state.hi.us/
dlnr/chairpio/HtmlNR/01-46.htm and http://starbulletin.
com/2005/07/01/news/index5.html), and a log of nec-
ropsies performed on turtles at Kaloko indicates that
shark attacks were responsible for the death of 4 tur-
tles since 1992 (obviously, attacks that resulted in the
complete ingestion of turtles by sharks cannot be mon-
itored; G. Balazs unpublished data). Thus, the distribu-
tion of turtles, and the algae they consume, may be
affected by differential vulnerability of green turtles to
shark predation in different habitats (Heithaus et al.
2002, 2006). Nutritionally profitable microhabitats at
Kaloko also appear to be low risk from a predation
perspective.

(3) The repeatedly grazed turfLB may be more palat-
able to green turtles than algae growing on deeper
sections of the reef. The area where turtles tend to
aggregate to feed is located close to ‘Ai’o–pio fish trap,
an area of considerable groundwater discharge (John-
son et al. 2008). As groundwater is the only conduit for
nutrients into the coastal zone, the nutritional content
of algae in this specific location may be significantly
different from algae on the remainder of the reef.

Potential threats and impacts on natural resources
due to urban development

On many coral reefs near human population centers,
benthic community composition has shifted from coral-
dominated to macroalgae-dominated (Hughes 1994,
Hunter & Evans 1995, McClanahan & Mangi 2001).
These shifts, often termed ‘phase shifts’ (Done 1992),
have been attributed to increased anthropogenic nutri-
ent input (e.g. Lapointe 1997) and/or to reductions in
the abundance of herbivores (e.g. Hay 1984b). Studies
investigating changes in grazing intensity at sites that
have undergone such phase shifts (e.g. Ka–ne‘ohe Bay,
Hawai‘i), have focused primarily on the role of herbi-
vorous reef fish, and to a lesser extent small, often
invertebrate, herbivores (Cheroske et al. 2000) and sea
urchins (Hunter & Evans 1995, Stimson et al. 2001,
Smith et al. 2008). As our results clearly demonstrate,
future studies need to explicitly consider green turtles
because of their important role as herbivores. Their
consumption of non-native algae, including Gracilaria
salicornia (Russell & Balazs 2009), abundant at a num-
ber of locations across Hawai‘i, including Ka–ne‘ohe
Bay, further highlights their role in promoting reef
resilience.

Ongoing and planned urban development activities,
and associated population growth, around Kaloko will
likely have significant and diverse impacts on the con-
dition of nearby reefs. Expected impacts include, but
are not restricted to: (1) A reduction in groundwater
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discharge quality (i.e. increased nutrient loading),
which could lead to increased macroalgal growth and
the subsequent deterioration in the health of corals
(e.g. Fabricius 2005, Smith & Smith 2006), particularly
if combined with a reduction in the urchin population;
and (2) An increase in fishing pressure and a resulting
decrease in the herbivorous fish population, which
could lead to an increase in the abundance of macroal-
gae (Stimson et al. 2001, Williams et al. 2007). Based on
our findings, some key points emerge that should be
taken into account if dynamic simulations of various
‘impact scenarios’ are run in the future.

Increased nutrient input and higher fishing pressure
may lead to an increase in the proportion of macroalgal
cover at Kaloko and potential forage for resident herbi-
vores. In 2008, the NPS initiated a long-term marine
water quality monitoring program (quarterly sam-
pling), which includes optical chlorophyll sampling.
Additionally, plans are underway through a partner-
ship between the NPS and the US Geological Survey
to use stable isotope tracers to identify sources of nutri-
ent inputs to park groundwater. The NPS, in partner-
ship with the University of Hawai‘i at Hilo, recently
also initiated a pilot fisheries harvest monitoring pro-
gram to identify and quantify fishing pressure within
the park; this should be a long-term initiative. Nutrient
levels and fisheries’ catch time series in conjunction
with regular monitoring of algal cover within the dif-
ferent habitats at Kaloko, and the Ecopath model
developed herein, may help to determine the impacts
of such changes at the ecosystem level. Based on our
model, we would expect the following responses to 2
scenarios:

(1) Increased nutrient delivery to the reef system
without changes in fishing pressure. Under conditions
of nutrient enrichment and intense herbivory, algal
productivity may be high while biomass remains low
(Hatcher & Larkum 1983). Our results demonstrate that
current rates of herbivory, sea urchins, fish, and green
turtles maintain all algal groups closely cropped and
may therefore be able to consume increases in algal
production. This grazing disturbance in turn limits the
establishment of macroalgae (Lewis 1986, Williams et
al. 2001, Paddack et al. 2006), implying that the current
system is relatively resilient to change (as indicated by
Kaloko’s O/C ratio). Indeed, it is the synergy of these
3 herbivorous functional groups that makes Kaloko an
interesting case study. The ‘redundancy’ in herbivory
at Kaloko stands in contrast to areas of the Caribbean,
where sea urchin biomass remains low 20 yr after the
region-wide loss of the key echinoid herbivore to dis-
ease (Mumby et al. 2006b), and where, due to high
fishing pressure, the ability of herbivorous fish to
maintain a high proportion of reef area free of macroal-
gae may be limited. Some evidence suggests that even

robust herbivorous reef fish populations may be capa-
ble of maintaining only 50 to 65% of the substratum in
a cropped state (Williams et al. 2001). Although herbi-
vorous fish may be capable of increasing their grazing
rates and/or population sizes in response to higher
algal production, evidence for this in the published lit-
erature is limited (McClanahan et al. 1999, Williams et
al. 2001, Garpe et al. 2006). Moreover, herbivorous reef
fish, with the exception of Naso spp. (Choat et al.
2002), all prefer turf algae over other algal resources,
and frequently avoid macroalgae (Bellwood & Choat
1990, Bruggemann et al. 1994). Green turtles and sea
urchins, on the other hand, commonly feed on macro-
algae, highlighting their respective roles in maintain-
ing reef resilience (Nystrom 2006).

(2) Increased nutrient delivery to the reef system with
increase in fishing pressure. Herbivorous fish and sea
urchins play different and complementary roles in main-
taining low algal cover on reefs in the face of disturbance
(e.g. Morrison 1988). Under a scenario of higher fishing
pressure, model parameterization indicates that sea
urchin abundance may increase as a direct response to
more abundant forage on the reef and reduced preda-
tion pressure due to harvesting of the urchins’ predators.
Sea urchins, when abundant, can have a considerable
impact on benthic ecology. Healthy populations of sea
urchins have been associated with reductions in macro-
algal cover and increased coral recruitment (Edmunds &
Carpenter 2001, Carpenter & Edmunds 2006). Typically,
sea urchins will consume a greater diversity of algae
than herbivorous reef fish and, as such, they will be more
effective than the latter at controlling algal growth in the
event of increased nutrient levels. Alternatively, as some
species of echinoids can remove a large amount of
calcium carbonate while foraging (Hutchings 1986,
Carreiro-Silva & McClanahan 2001), an overabundance
of sea urchins can lead to rapid erosion of the reef frame-
work (McClanahan & Kurtis 1991, Bak 1994, Mapstone
et al. 2007). For example, Echinothrix diadema and
Echinometra mathaei typically erode 20% of the calcium
carbonate accreted (Carreiro-Silva & McClanahan 2001).
However, the relative contributions of grazing and bio-
erosion are species-dependent. Tripneustes gratilla pre-
dominantly browses on macroalgae, suggesting that this
species would have less of an impact on the reef frame-
work (Mills et al. 2000).

Currently, sea urchin densities are greatest in the
shallows, while reef fish dominate grazing processes
at depth (F. Parrish & M. Weijermann pers. comm.).
Higher fishing pressure may reduce fish grazing inten-
sity on deeper reef sections. In response to reduced
predation, competition, and increased forage availabil-
ity, sea urchins could increase in abundance at greater
depths. Similarly, green turtles may also displace some
of their foraging activities to deeper reef areas to take
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advantage of increased algal biomass (i.e. profitable,
high-risk microhabitat sensu Heithaus et al. 2007).
Increases in algal biomass would further be exacer-
bated if mixing carries nutrients to those deeper sec-
tions of reef.

CONCLUSIONS

Our model evaluates the trophic linkages and flows on
a Hawaiian near-shore reef. Our study is unique in its
detailed analysis of herbivory levels and its focus on the
role of herbivores to determine whether a given func-
tional group, in this instance green turtles, is at carrying
capacity. Integration of additional quantitative field data
on biomass, distribution, consumption rates, and diet
selection of the 3 herbivore functional groups would clar-
ify the proportion and type of algae consumed by sea
urchins and green turtles versus herbivorous fish on a
Hawaiian reef and further elucidate their respective
roles in, and contribution to, reef resilience (Nystrom &
Folke 2001, Bellwood et al. 2004).
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