biology letters

Individual specialists in a generalist population: results from a long-term stable isotope series

Hannah B. Vander Zanden, Karen A. Bjorndal, Kimberly J. Reich and Alan B. Bolten

Biol. Lett. published online 24 March 2010 doi: 10.1098/rsbl.2010.0124

Supplementary data	"Data Supplement" http://rsbl.royalsocietypublishing.org/content/suppl/2010/03/18/rsbl.2010.0124.DC1.ht ml
References	This article cites 17 articles, 3 of which can be accessed free http://rsbl.royalsocietypublishing.org/content/early/2010/03/18/rsbl.2010.0124.full.html #ref-list-1
P <p< th=""><th>Published online 24 March 2010 in advance of the print journal.</th></p<>	Published online 24 March 2010 in advance of the print journal.
Subject collections	Articles on similar topics can be found in the following collections
	ecology (1289 articles)
Email alerting service	Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To subscribe to Biol. Lett. go to: http://rsbl.royalsocietypublishing.org/subscriptions

Biol. Lett. doi:10.1098/rsbl.2010.0124 Published online

Individual specialists in a generalist population: results from a long-term stable isotope series

Hannah B. Vander Zanden*, Karen A. Bjorndal, Kimberly J. Reich and Alan B. Bolten

Archie Carr Center for Sea Turtle Research and Department of Biology, University of Florida, PO Box 118525, Gainesville, FL 32611, USA *Author for correspondence (hvz@ufl.edu).

Individual variation in resource use has often been ignored in ecological studies, but closer examination of individual patterns through time may reveal significant intrapopulation differences. Adult loggerhead sea turtles (Caretta caretta) are generalist carnivores with a wide geographical range, resulting in a broad isotopic niche. We microsampled scute, a persistent and continuously growing tissue, to examine longterm variation in resource use (up to 12 years) in 15 nesting loggerhead turtles. Using stable isotopes of nitrogen and carbon, we examined the resource use patterns (integration of diet, habitat and geographical location) and demonstrate that individual loggerheads are long-term specialists within a generalist population. We present our results in the context of a conceptual model comparing isotopic niches in specialist and generalist populations. Individual consistency may have important ecological, evolutionary and conservation consequences, such as the reduction of intraspecific competition.

Keywords: isotopic niche; resource use; sea turtles; specialist; stable isotopes

1. INTRODUCTION

Hutchinson's (1957) conceptualization of the niche as an *n*-dimensional hypervolume of resource use has since been expanded in the ecological literature. Van Valen (1965) first incorporated the idea of individual variation in resource use into niche theory, but intrapopulation variation in resource use is often overlooked in ecological studies (Bolnick *et al.* 2003). While there are many niche concepts based on various ecological characteristics, a recent expansion of the niche theory uses stable isotopes as the measure of niche width (Bearhop *et al.* 2004; Newsome *et al.* 2007). Examining intra- and inter-individual isotopic variance can be an effective way to investigate specialization and the ecological niche (Newsome *et al.* 2007; but see Matthews & Mazumder 2004).

Stable isotopes of consumers reflect that of prey as well as the habitat of the individual. Nitrogen isotopes typically indicate trophic position (Post 2002), while carbon isotopes reflect variation in baseline producers

Electronic supplementary material is available at http://dx.doi.org/ 10.1098/rsbl.2010.0124 or via http://rsbl.royalsocietypublishing.org. or habitat (DeNiro & Epstein 1978). Tissues that are created over time and remain inert after synthesis, such as hair, otoliths and baleen, reflect resource use at the time of formation (Hobson 1999) and allow longitudinal sampling with stable isotope analysis of successive microlayers (Cerling *et al.* 2009; Cherel *et al.* 2009). Sea turtles have such a tissue—scute—which is a keratinized epidermis covering the bony shell of most chelonians. Scute grows from basal epidermis and accumulates with the oldest tissue at the surface, making possible the examination of resource use (which we define here as the integration of diet, habitat and geographical location) of individuals over time.

Figure 1 presents a conceptual model of the isotopic records from an inert tissue of three hypothetical time series of resource use for one specialist and two generalist populations. In our model, isotopic signatures may be influenced by diet, habitat type and geographical location. We use specialization to refer to the use of a relatively limited fraction of the possible range of available resources. In the specialist population (figure 1a), both individual and population isotopic niche widths narrow. In the first generalist population are (figure 1b), generalist individuals vary widely in their resource use, resulting in an isotopic record that shifts through time so that both individuals and the population occupy a wide isotopic niche space. In the second generalist population (figure 1c), specialist individuals maintain consistent resource use within a narrow isotopic niche space, but variation among individuals results in a wide population isotopic niche. Without long-term individual records, the generalist populations in figure 1b,c are indistinguishable. As drawn, our conceptual model assumes no temporal variation. However, the horizontal lines in figure 1a,c would exhibit a cyclic pattern if seasonal variation occurred. Our model does not address asynchronous temporal variation among sites.

The endangered loggerhead sea turtle (*Caretta caretta*) is a generalist species that feeds on a wide range of prey (Bjorndal 1997). Loggerheads nesting in Florida forage over a broad geographical range from New Jersey, USA, to Belize, and these geographical areas have different isotopic baselines (Reich *et al.* 2010). We examine the long-term consistency in resource use of a nesting loggerhead population through stable isotope analysis of δ^{15} N and δ^{13} C in scute layers to distinguish between the two types of generalist populations. Given the generalist nature at the population level, our objective is to reveal the individual patterns of resource use in loggerheads—that is, do individuals forage over a broad resource base or are they specialists within the generalist population?

2. MATERIAL AND METHODS

Scute samples were taken with sterile 6 mm biopsy punches from 15 adult female loggerheads (curved carapace length range 86.5–108.8 cm) while nesting at Cape Canaveral National Seashore, FL, USA, in May–June 2004. After lipid extraction with petroleum ether using an accelerated solvent extractor, scutes were micro-sampled in 50 μ m layers to provide a sufficient sample for stable isotope analysis using a carbide end mill with *x*, *y* and *z* axes controls to a precision of 10 μ m. The number of 50 μ m layers in a sample ranged from 8 to 22.

We analysed variation in δ^{15} N and δ^{13} C using multivariate analysis of variance (MANOVA) with the Wilks' lambda test. We then

Figure 1. Conceptual model of three population patterns of isotope signatures representing resource use through time. Arrows track individuals, and each circle represents the δ^{15} N value for a layer of inert tissue, which reflects resource use (integration of diet, habitat and geographical location). See text for discussion of the three strategies. (*a*) Specialist population–specialist individuals; (*b*) generalist population–generalist individuals and (*c*) generalist population–specialist individuals.

used protected analysis of variances (ANOVAs) to compare variation in δ^{15} N or δ^{13} C within and among turtles.

We estimated the time required for scute to grow 50 μ m to calculate the duration represented in an entire scute sample. First, we adjusted the known rate of isotopic incorporation of scute in growing juvenile loggerheads (Reich *et al.* 2008) to non-growing adults. Using the adjusted incorporation rate, we estimated the complete turnover as four half-lives, which is the time a new isotopic equilibrium would be reached after a shift in resource use. We applied this to an apparent shift in the δ^{13} C signature of one individual that occurred over several layers (open circle in figure 2*b*; figure S1 in electronic supplementary material). See electronic supplementary material for detailed methods.

3. RESULTS

We estimated that one 50 μ m layer of loggerhead scute is equivalent to 0.6 years. The scute samples range from 400 to 1100 μ m in depth, and thus, the time interval in the entire scute record ranges from 4 to 12 years (median 8).

Individuals exhibit high consistency in both δ^{15} N and δ^{13} C (figure 2), and the mean range of individuals is much smaller than that of the population for nitrogen and carbon (table 1). Individual patterns in resource use in both δ^{15} N and δ^{13} C combined (figure S2 in electronic supplementary material) reveal individual consistency (MANOVA, F = 437, p < 0.001). Based on ANOVAs, variation within individuals (less than 7% of total variation) was less than that among individuals (table 2).

4. DISCUSSION

We estimate that loggerhead scute samples may contain up to 12 years of resource use history, providing a lengthy record from which to investigate patterns in

Figure 2. (a) δ^{15} N values of successive scute layers from 15 loggerheads. Each line represents all layers for one individual, noted with a unique symbol. (b) δ^{13} C values with the same format and the same individual symbols as (a). Starting points and intervals vary for some individuals because layers were combined to provide sufficient samples for analysis. The number of layers reflects the thickness of the sample.

Table 1. Minimum, maximum and mean ranges of δ^{15} N and δ^{13} C for individual scute records (n = 15). (The population range is the difference between the maximum and minimum values for all individuals.)

	minimum	maximum	mean range	population
	range (‰)	range (‰)	(±s.d.) (‰)	range (‰)
$\delta^{15}N \delta^{13}C$	0.33 0.36	2.42 3.23	$\begin{array}{c} 0.93 \ (\pm 0.66) \\ 1.26 \ (\pm 0.65) \end{array}$	9.03 10.45

a long-lived species. To our knowledge, our study reports the longest record of resource use history obtained from living individuals.

Comparison of long-term scute records (figure 2) with isotopic scenarios presented in figure 1 reveals that this generalist population is composed of individual specialists. Although all of these loggerheads were sampled at the same nesting beach and an entire ocean basin is potentially available to the population, individuals use only a limited fraction of the available isotopic niche space (figure S2 in the electronic supplementary material).

In our study, specialization is not limited to a diet consisting of a single prey item, but the observed specialization results from a consistent mixture of

Table 2. ANOVAs indicate significant differences between the means of individuals, with a large proportion of the variation attributed to among rather than within individuals.

	SS-among	SS-within	F	<i>p</i> -value
δ^{15} N δ^{13} C	1251.7	89.4	533.2	<0.001
	1767.8	36.6	623.3	<0.001

prey, habitat and geographical location, which we are unable to separate with our sampling regime. Consumption of a prey mixture is likely, as individual loggerhead stomach contents often contain several prey species (Bjorndal 1997). While some of the variation among individuals may be owing to individual variation in isotopic discrimination or physiology rather than differences in foraging (Barnes *et al.* 2008), it is unlikely that this would result in the wide isotopic range observed.

The large population range in δ^{15} N values (9.0‰) could be indicative of a population that is feeding over several trophic levels if the baseline nitrogen is stable in all of the foraging locations of these individuals (Post 2002). However, if baseline nitrogen signatures change with foraging location, isotopic differences will be more reflective of habitat or location than of trophic level feeding differences because the same prey species will have different isotope signatures among these areas. We believe locational differences are more likely than trophic level differences, as the similarly large range of δ^{13} C values (10.5‰) indicates that loggerheads have geographically separated foraging areas and/or are incorporated in food webs with enriched or depleted δ^{13} C producers.

The gap in δ^{13} C values between -12.5% and -14.5% (figure 2b) represents the division between two foraging groups identified by Reich *et al.* (2010). The groups represent two general habitat use patterns that could result from food webs with different δ^{13} C baselines owing to an isotopic gradient (e.g. oceanic/neritic, pelagic/benthic, latitudinal). Only one turtle crossed between groups, indicating that individuals have high fidelity to foraging sites and/or habitat type. This foraging fidelity is consistent with the observations of eight adult female loggerheads tracked from North Carolina, USA; two different movement types were observed, but all individuals exhibited interannual fidelity to discrete foraging sites (Hawkes *et al.* 2007).

Intrapopulation variation in resource use can have ecological, evolutionary and conservation consequences. Resource use heterogeneity, indicated by the broad population isotopic niche width and narrow individual niche widths, reduces intraspecific competition and may alter selective pressures (Bolnick *et al.* 2003). Reduction in intraspecific competition appears to be substantial in adult loggerheads, given the small proportion of variance in our study attributed to within-individual variation (less than 7%, table 1). In comparison, a recent study of diet specialization in sea otters, based on vibrissae isotope signatures, estimated that 28 per cent of the variance was attributed to within-individual variation (Newsome *et al.* 2009). Examining the degree of individual specialization within a population provides a better understanding of its ecology, behaviour and population dynamics. Our approach to resource use has broad application for species that possess consistently growing, inert tissues that can be serially sampled. Because diet and habitat are confounded in this study, loggerheads should be sampled at a series of foraging grounds to distinguish the effects of diet, habitat and geographical location on isotopic signatures.

This study was conducted under the University of Florida IACUC (Protocol no. D-093), Florida FWC (Permit no. TP-016) and US National Park Service (Permit no. CANA-2004-SCI-0003).

This study was funded by National Marine Fisheries Service, US Fish and Wildlife Service, Disney Worldwide Conservation Fund, FWC Marine Turtle Grants Program, Cape Canaveral National Seashore and NSF-GRFP (H.B.V.Z.). We thank B. Bolker, J. Curtis, P. Eliazar, J. Gillooly, A. Hayward, A. Hein, C. Martínez del Rio, S. Oppel, N. Osman, T. Palmer, J. Steiner and two anonymous referees.

- Barnes, C., Jennings, S., Polunin, N. V. C. & Lancaster, J. E. 2008 The importance of quantifying inherent variability when interpreting stable isotope field data. *Oecologia* 155, 227–235. (doi:10.1007/s00442-007-0904-y)
- Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. 2004 Determining trophic niche width: a novel approach using stable isotope analysis. *J. Anim. Ecol.* **73**, 1007–1012. (doi:10.1111/j.0021-8790.2004. 00861.x)
- Bjorndal, K. A. 1997 Foraging ecology and nutrition of sea turtles. In *The biology of sea turtles*, vol. 1 (eds P. L. Lutz & J. A. Musick), pp. 199–230. Boca Raton, FL: CRC Press.
- Bolnick, D. I., Svanback, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D. & Forister, M. L. 2003 The ecology of individuals: incidence and implications of individual specialization. *Am. Nat.* 161, 1–28. (doi:10.1086/ 343878)
- Cherel, Y., Kernaléguen, L., Richard, P. & Guinet, G. 2009 Whisker isotopic signature depicts migration patterns and multi-year intra- and inter-individual foraging strategies in fur seals. *Biol. Lett.* 5, 830–832. (doi:10.1098/rsbl.2009. 0552)
- Cerling, T. E., Wittemyer, G., Ehleringer, J. R., Remien, C. H. & Douglas-Hamilton, I. 2009 History of Animals using Isotope Records (HAIR): a 6-year dietary history of one family of African elephants. *Proc. Natl Acad. Sci.* USA 106, 8093–8100.
- DeNiro, M. J. & Epstein, S. 1978 Influence of diet on the distribution of carbon isotopes in animals. *Geochim. Cosmochim. Acta* 42, 495–506. (doi:10.1016/0016-7037(78)90199-0)
- Hawkes, L. A., Broderick, A. C., Coyne, M. S., Godfrey, M. H. & Godley, B. J. 2007 Only some like it hot: quantifying the environmental niche of the loggerhead sea turtle. *Diversity Distrib.* 13, 447–457. (doi:10.1111/ j.1472-4642.2007.00354.x)
- Hobson, K. A. 1999 Tracing origins and migration of wildlife using stable isotopes: a review. *Oecologia* **120**, 314–326. (doi:10.1007/s004420050865)
- Hutchinson, G. E. 1957 Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427.

- 4 H. B. Vander Zanden et al. Loggerhead resource use consistency
- Matthews, B. & Mazumder, A. 2004 A critical evaluation of intrapopulation variation of δ^{13} C and isotopic evidence of individual specialization. *Oecologia* **140**, 361–371. (doi:10.1007/s00442-004-1579-2)
- Newsome, S. D., Martínez del Rio, C., Bearhop, S. & Phillips, D. L. 2007 A niche for isotopic ecology. *Front. Ecol. Environ.* **5**, 429–436.
- Newsome, S. D., Tinker, M. T., Monson, D. H., Oftedal, O. T., Ralls, K., Staedler, M. M., Fogel, M. L. & Estes, J. A. 2009 Using stable isotopes to investigate individual diet specialization in California sea otters (*Enhydra lutris nereis*). *Ecology* **90**, 961–974. (doi:10.1890/07-1812.1)
- Post, D. M. 2002 Using stable isotopes to estimate trophic position: models, methods, and assumptions.

Ecology **83**, 703–718. (doi:10.1890/0012-9658 (2002)083[0703:USITET]2.0.CO;2)

- Reich, K. J., Bjorndal, K. A. & Martínez del Rio, C. 2008 Effects of growth and tissue type on the kinetics of 13 C and 15 N incorporation in a rapidly growing ectotherm. *Oecologia* **155**, 651–663. (doi:10.1007/s00442-007-0949-y)
- Reich, K. J., Bjorndal, K. A., Frick, M. G., Witherington, B. E., Johnson, C. & Bolten, A. B. 2010 Polymodal foraging in adult female loggerheads (*Caretta caretta*). *Mar. Biol.* 157, 113–121. (doi:10.1007/s00227-009-1300-4)
- Van Valen, L. 1965 Morphological variation and width of ecological niche. Am. Nat. 99, 377–390. (doi:10.1086/ 282379)

1	Electronic supplementary material
2	
3	Individual specialists in a generalist population: results
4	from a long-term stable isotope series
5	
6	Hannah B. Vander Zanden, Karen A. Bjorndal, Kimberly J. Reich, Alan B. Bolten
7	
8	METHODS
9	General
10	• Minimum curved carapace length was measured from the anterior point at midline to the
11	posterior notch at midline between the supracaudal scutes (Bolten 1999).
12	• Statistical analyses were performed with S-Plus software (version 8.1; TIBCO Spotfire
13	Software, Inc.) with $\alpha = 0.05$.
14	Scute sampling and analysis
15	• Two scute biopsies were taken from opposite corners of the third lateral scute of each
16	individual: one in the posterior margin near the central scute and the other at the opposite
17	anterior corner along the border with the marginal scutes (see Reich et al. (2007)). Of the
18	two scute samples taken from each individual, the longer sequence was used for stable
19	isotope analysis.
20	• Scutes were preserved in 70% ethanol after collection for approximately the same time
21	period, and each sample was rinsed clean in deionized water before drying at 60°C for 24
22	hours. Lipids were extracted with an accelerated solvent extractor using petroleum ether as
23	the solvent. Each scute sample was glued to a glass slide before successive 50-µm layers

were ground. The number of layers obtained was proportional to the thickness of the scutesample.

 Samples of 500-600 μg from each layer were combusted i 	n a COSTECH ECS 4010
--	----------------------

27 elemental analyzer interfaced via a Finnigan-MAT ConFlow III device (Finnigan MAT,

28 Bremen, Germany) to a Finnigan-MAT DeltaPlus XL (Bremen, Germany) isotope ratio mass

29 spectrometer in the Center for Isotope Geoscience at the University of Florida, Gainesville,

30 Florida. Delta (δ) notation is used to express all stable isotope ratios relative to the standard

31 in parts per thousand (‰) as follows:

32
$$\delta = ([R_{sample}/R_{standard}] - 1) * 1000$$

where R_{sample} and $R_{standard}$ are the corresponding ratios of heavy to light isotopes (${}^{13}C/{}^{12}C$ and ${}^{15}N/{}^{14}N$) in the sample and international standard, respectively. Standards were Vienna Pee Dee Belemnite (VPDB) for ${}^{13}C$ and atmospheric N₂ for ${}^{15}N$. The reference material USGS40 (L-glutamic acid) was used as a calibration standard in all runs: SD = 0.11 and 0.12‰ for $\delta^{13}C$ and $\delta^{15}N$, respectively (n = 37). An internal loggerhead scute standard was used to indicate analytical precision of our measurements: SD = 0.17 and 0.13‰ for $\delta^{13}C$ and $\delta^{15}N$, respectively (n = 18).

One anomalous layer (out of 196) was excluded from analysis because we did not have
sufficient sample to reanalyze it. The excluded point is indicated by the dashed line in figure
2*a*,*b*.

43 *Estimation of scute age*

Scute turnover was estimated in four steps from the carbon incorporation rate measured
in juvenile loggerheads. This rate was adjusted to non-growing adults of a larger body mass and

- 46 was applied to a shift in resource use in the scute record (figure S1) to find the time required for
- 47 50 μ m of scute growth.

48 <u>Step 1: Isotopic incorporation rate in juvenile loggerheads excluding growth</u>

49 The fractional rate of isotopic incorporation (k_{st}) describes the daily isotopic change in a tissue,

- 50 which Hesslein et al. (1993) demonstrated is the sum of the growth rate of the tissue (k_{gt}) and the
- 51 rate of catabolic degradation (k_{dt}) .

$$52 \qquad k_{st} = k_{gt} + k_{dt}$$

53 We set $k_{st} = k_{dt}$ to attribute the isotopic incorporation to catabolic degradation alone, as growth in

- 54 mature loggerheads is negligible (Bjorndal et al. 1983). Reich et al. (2008) report the catabolic
- 55 degradation component of turnover for juvenile turtles as $k_{dt} = 0.013 \text{ day}^{-1}$ for carbon.

56 Step 2: Scaling to adult body mass using
$$-\frac{1}{4}$$
 power

57 There is a two orders of magnitude difference in mass between adult and juvenile loggerheads:

58 1.7 kg for juveniles (Reich et al. 2008), while adult loggerheads are approximately 115 kg (Dodd

59 1988). The fractional rate of turnover is thought to be allometrically related to body mass due to

60 whole body protein turnover rates and the rate of elemental incorporation into a tissue (Martínez

61 del Rio et al. 2009). There is evidence that this turnover rate scales with body mass to the $-\frac{1}{4}$

62 power (Carleton & Martínez del Rio 2005; Bauchinger & McWilliams 2009). Therefore, the

- 63 value of catabolic turnover (k_{dt}) for carbon measured in juvenile loggerheads (Reich et al. 2008)
- 64 was estimated for adult turtles by using a $-\frac{1}{4}$ power body mass scaling to yield $k_{dt} = 0.0045$.
- 65 Mass₁ = 1.7 kg $k_{dt1} = 0.013 \text{ day}^{-1}$
- 66 Mass₂ = 115 kg $k_{dt2} = 0.0045 \text{ day}^{-1}$
- 67 <u>Step 3: Turnover after four half-lives</u>
- 68 One half-life was estimated by using $\ln(2)/k_{st}$, and turnover was estimated as four half-lives

69 (Seminoff et al. 2007), at which point 93.75% of turnover is complete.

70 Turnover =
$$4 * \ln(2)/0.0045 \text{ day}^{-1} = 1.7 \text{ yr}$$

71 <u>Step 4: Turnover applied to resource use shift example</u>

Figure S1 shows the scute record of a single individual that has undergone a shift in resource use; turnover is achieved after three layers. If we assume the shift is abrupt and complete, it follows that each 50 µm layer is equivalent to 0.6 years (1.7 yr to turnover divided by 3 layers for linear scute growth). The scute records in this study range from 400 to 1100µm, thus the time in the entire scute record ranges from approximately 4 to 12 years (median 8).

77 No data are available on sea turtle scute growth rates or retention time to make precise 78 estimates of the time period represented in these samples. The scute record does not extend 79 throughout the lifetime of the animal, except in young turtles, as scute is subject to gradual 80 mechanical wear. While superficial layers may be worn away on loggerheads, the persistence of 81 epibionts indicates that scute may be present for several years (Day et al. 2005). Our time 82 estimates are calculated from an allometric relationship between isotopic turnover and body mass 83 that has been demonstrated in endotherms (Bauchinger & McWilliams 2009). Because we do 84 not account for differences in temperature, we may have underestimated time for turnover in 85 these ectotherms (Gillooly et al. 2001).

Figure S1. Plot of one loggerhead scute record that was used to estimate the time period in which a shift in resource use occurred. As scute grows from the ventral surface up, the x-axis represents youngest to oldest tissue from left to right on the graph. The solid arrow indicates where the shift begins and the dashed arrow indicates the equilibrium value when the shift is complete. This has been plotted using the same axes as figure 2 in the main text for ease of comparison.

Figure S2. δ^{13} C and δ^{15} N biplot for sequence of scute layers. Symbols represent the same individuals as in figure 2 of the main text.

100 **References**

- Bauchinger, U. & McWilliams, S. 2009 Carbon turnover in tissues of a passerine bird: allometry,
 isotopic clocks, and phenotypic flexibility in organ size. *Physiol. Biochem. Zool.* 82, 541548.
- Bjorndal, K. A., Meylan, A. B. & Turner, B. J. 1983 Sea turtles nesting at Melbourne Beach,
 Florida, I. Size, growth and reproductive biology. *Biol. Conserv.* 26, 65-77.
- Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. 2002 Measuring
 individual-level resource specialization. *Ecology* 83, 2936-2941.
- 108 Bolten, A. B. 1999 Techniques for measuring sea turtles. In Research and Management
- 109 *Techniques for the Conservation of Sea Turtles* (ed. K. L. Eckert, K. A. Bjorndal, A.
- 110 Abreu-Grobois & M. Donnelly), pp. 110-114. IUCN, Gland, Switzerland.
- 111 Carleton, S. A. & Martínez del Rio, C. 2005 The effect of cold-induced increased metabolic rate
- 112 on the rate of ¹³C and ¹⁵N incorporation in house sparrows (*Passer domesticus*).
- 113 *Oecologia* **144**, 226-232.
- Day, R. D., Christopher, S. J., Becker, P. R. & Whitaker, D. W. 2005 Monitoring mercury in the
 loggerhead sea turtle, *Caretta caretta*. *Environ. Sci. Technol.* **39**, 437-446.
- Dodd, C. K., Jr. 1988 Synopsis of the biological data on the loggerhead sea turtle *Caretta*(Linnaeus 1758). U.S. Fish. Wildl. Service Biol. Rep. 88, 1-110.
- Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. 2001 Effects of size
 and temperature on metabolic rate. *Science* 293, 2248-2251.
- 120 Hesslein, R. H., Hallard, K. A. & Ramlal, P. 1993 Replacement of sulfur, carbon, and nitrogen in
- 121 tissue of growing broad whitefish (*Coregonus nasus*) in response to a change in diet
- 122 traced by δ^{34} S, δ^{13} C, and δ^{15} N. *Can. J. Fish. Aquat. Sci.* **50**, 2071-2076.

123	Martínez del Rio, C., Wolf, N., Carleton, S. A. & Gannes, L. Z. 2009 Isotopic ecology ten years
124	after a call for more laboratory experiments. Biol. Rev. 84, 91-111.

- Reich, K. J., Bjorndal, K. A. & Bolten, A. B. 2007 The 'lost years' of green turtles: using stable
 isotopes to study cryptic lifestages. *Biol. Lett.* 3, 712-714.
- Reich, K. J., Bjorndal, K. A. & Martínez del Rio, C. 2008 Effects of growth and tissue type on
 the kinetics of ¹³C and ¹⁵N incorporation in a rapidly growing ectotherm. *Oecologia* 155,
- 129
 651-663.
- 130 Seminoff, J. A., Bjorndal, K. A. & Bolten, A. B. 2007 Stable carbon and nitrogen isotope
- 131 discrimination and turnover in pond sliders *Trachemys scripta*: insights for trophic study
- 132 of freshwater turtles. *Copeia* **2007**, 534-542.