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ABSTRACT

Several species of freshwater turtles in the family Emydidae
undergo an ontogenetic dietary shift; as juvenile turtles mature,
they change from a primarily carnivorous to a primarily her-
bivorous diet. It has been hypothesized that this shift results
from an unfavorable ratio of gut capacity to metabolic rate that
prevents small reptiles from processing adequate volumes of
plant material to meet their energetic demands. Effects of di-
etary dilution on intake were evaluated in two size classes of
red-eared sliders (Trachemys scripta elegans) to test whether
small reptiles have a lower capacity to compensate for low-
quality diets through increased intake than do larger conspe-
cifics. Artificial diets with an inert diluent were offered to two
size classes of turtles, and mass-specific intakes of dry matter,
energy, and nitrogen were calculated. Both small ( g28.7 5 4.9
body mass, mean ) and large ( g bodymass 5 SD 1,230 5 94
mass) turtles compensated for dietary dilution and maintained
constant energy and nitrogen intakes on diets with lower energy
content than common aquatic plants. Thus, body size did not
affect the ability to respond to nutritional dilution, which sug-
gests that processing limitations imposed by small body size
do not constrain juveniles from adopting an herbivorous diet.

Introduction

Energetic differences related to body size have been hypothe-
sized to be important in determining inter- and intraspecific
differences in the dietary habits of many reptiles (Pough 1973,
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1983; Wilson and Lee 1974). Additionally, observed ontogenetic
dietary shifts in some reptiles have been attributed to a com-
bination of these energetic differences and specific nutrient
requirements for juveniles, including an increased need for cal-
cium (Clark and Gibbons 1969) and nitrogen (White 1985;
Parmenter and Avery 1990). These hypotheses propose that
differences in mass-specific nutrient or energetic requirements
affect the ability of animals to make use of resources that span
a range of dietary concentrations.

The correlation between large body size and herbivory might
occur because energetic constraints imposed on reptiles by in-
creasing body size limit their ability to meet their metabolic
requirements on a carnivorous diet (Clark and Gibbons 1969;
Pough 1973, 1983; Wilson and Lee 1974; Parmenter and Avery
1990). Metabolic rates increase with body mass, although this
relationship is reversed if considered on a mass-specific basis
(Bennett and Dawson 1976). As a result, larger reptiles have
higher total energetic demands than do small reptiles, a con-
sequence of maintaining a greater total mass of muscle and
other metabolizing tissue. A higher total muscle mass also
means that larger turtles expend more energy in pursuing and
capturing prey than do smaller turtles. Therefore, the net gain
from foraging on mobile animal prey may be lower for large
turtles than small turtles. To meet their higher energetic de-
mands, larger turtles might rely on plant material both because
of the higher energetic costs associated with capturing animal
prey and because plant material is typically more abundant
than animal prey (Pough 1973, 1983; Wilson and Lee 1974;
Parmenter and Avery 1990). The hypothesis that large reptiles
are forced to adopt herbivory implies that the costs of actively
foraging for animal matter are too high relative to the energy
gain such prey provide and therefore that large turtles better
sustain their high total energy demands through herbivory.

An alternative hypothesis suggests that the unfavorable ratio
of mass-specific energy requirements to gut capacity in smaller
animals may limit their dietary intake and consequently de-
crease their ability to subsist on diets with low nutrient and
energy concentrations, including diets composed primarily of
plant material (Pough 1973, 1983; Wilson and Lee 1974; Dem-
ment 1983; Penry and Jumars 1987; Smith 1995). Small body
size might function as a constraint to herbivory in reptiles if
it limits their ability to process adequate volumes of nutrition-
ally dilute diets, such as plants (Pough 1973, 1983; Wilson and
Lee 1974). The extent to which small reptiles can increase intake
in compensation for decreasing nutrient and energy concen-
trations has not been adequately explored.
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Figure 1. Theoretical relationship between diet quality and intake. The
curve represents an approximation of the intake response by an in-
dividual organism to varying diet quality.

Dietary intake may be regulated by numerous factors, in-
cluding prey availability, energetic requirements, environmental
conditions, social behavior, and diet quality (Maynard et al.
1979; Parmenter 1981; Bjorndal 1986, 1987; Weston and Poppi
1987; Van Soest 1994). Although all of these factors may play
a role in regulating intake, research suggests that, with access
to palatable, nutritionally adequate food and under conditions
of low environmental stress, animals regulate dietary intake to
meet their energetic requirements (summarized in Weston and
Poppi [1987]). Decreases in the digestible energy content of
diets result in compensatory increases in dry mass intakes in
horses (Laut et al. 1985), rabbits (Butcher et al. 1983), and
ruminants (summarized in Baumgardt [1970]), as well as in
slugs (Rueda et al. 1991), aquatic snails (Rollo and Hawryluk
1988), phytophagous insects (Simpson and Simpson 1990), and
fish (Grove et al. 1978; Jobling 1980). These compensatory
increases in dry mass intake resulted in constant digestible en-
ergy intakes and constant body mass gains in growing animals.
However, these increases are constrained eventually by gut ca-
pacity, and herbivores fed very low-quality diets tend to de-
crease intake (Weston and Poppi 1987). As a result, the general
relationship between diet quality and intake forms a curve in
which decreasing diet quality leads to an initial increase in
intake that compensates for decreasing digestible energy intake
(Fig. 1). However, as diet quality continues to decrease, intake
is reduced as palatability and the ability to extract nutrients
essential for tissue metabolism decline (Weston and Poppi
1987). The relationship between intake and diet quality is likely
to be affected by a variety of factors, including the animal’s
growth requirements, intestinal capacity, and reproductive con-
dition (Baumgardt 1970; Butcher et al. 1983; Weston and Poppi
1987; Smith 1995).

The relationship between diet quality and intake can be ex-
amined experimentally by diluting the diet to alter systemati-
cally the concentrations of digestible energy or other nutrients
in artificial diets. Previous studies have used water (Rueda et
al. 1991), cellulose (Rollo and Hawryluk 1988), and kaolin
(Jobling 1980; Coutteau et al. 1994) as inert diluents to explore
the relationship between diet quality and intake. The extent to
which animals can compensate for these inert diluents to main-
tain constant energy intakes determines their ability to meet
their energetic demands on a low-quality diet and consequently
their foraging ecology.

Slider turtles (Trachemys scripta) are a model system for test-
ing hypotheses on the role of nutrient and energy concentra-
tions in determining size-related dietary choices. Slider turtles
are omnivores that forage on aquatic plants, invertebrates, and
occasionally vertebrates (Ernst and Barbour 1989; Parmenter
and Avery 1990). Opportunistic in their feeding habits, they
will consume whatever is available but feed preferentially on
animal matter (Parmenter and Avery 1990). However, like sev-
eral other emydid turtles, they undergo an ontogenetic dietary
shift involving an increased consumption of plant material by

adults (Clark and Gibbons 1969; Hart 1983; Parmenter and
Avery 1990). The observed dietary shift results in a change from
a nutritionally concentrated diet (animal matter) to a nutri-
tionally dilute diet (plant matter).

This study had two objectives. First, we tested the hypothesis
that small body size functions as a processing constraint,
thereby limiting the ability of juvenile slider turtles to maintain
constant energy gains on nutritionally dilute diets. Second, we
compared the ability of juveniles and adults to increase intake
in response to decreasing nutrient and energy concentrations.

Material and Methods

Animals and Housing Conditions

Juvenile red-eared sliders (Trachemys scripta elegans) were ob-
tained from a commercial source as hatchlings and maintained
for approximately a year and a half in a large tank. They were
fed a commercial turtle food ad lib. during this period. Eight
juvenile turtles ( g body mass) were used in feeding28.7 5 4.9
trials. Six adult T. s. elegans ( g body mass) were1,230 5 94
obtained from a commercial turtle source and housed individ-
ually until the beginning of the feeding trial. Only male adult
turtles were used to avoid effects of egg production on feeding
behavior. During the feeding trials, turtles were housed sepa-
rately in identical tanks. Tanks were lighted for 12 h d21 with
a 20-W full-spectrum fluorescent bulb (Vita-Lite) and a 75-W
outdoor floodlight. Water in the tanks was changed daily after
the completion of feeding and after food remaining in the tanks
was collected. Water entered the tanks at 287–297C and then
equalized to room temperature and remained at 247–257C. This
range of temperatures spans the range of preferred temperatures
reported for T. s. elegans (Gatten 1974) and is comparable to
those temperatures used in most other laboratory studies of T.
s. elegans.
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Table 1: Nutritional composition of experimental diets

Diet Dilution (%)

0 15 35 50

Organic matter (% DM) ... . . . 97.2 83.1 64.8 51.2
Energy (kJ g21 DM) ... . . . . . . . . . 21.9 18.6 13.8 10.2
Nitrogen (% DM) ... . . . . . . . . . . . 16.0 13.9 10.2 7.3

Note. DM is dry mass.

Experimental Procedures

Feeding trials used four diets that were diluted to varying ex-
tents with an inert clay, kaolin (Sigma Chemical). Kaolin was
used because of its success as a dietary diluent in other feeding
studies (Grove et al. 1978; Jobling 1980; Coutteau et al. 1994).
To test the safety of kaolin as a dietary diluent in turtles, we
conducted a preliminary trial in which eight adult T. s. elegans
were fed diets containing 50% kaolin for 4 wk. The turtles were
killed as part of a teaching lab at the end of the trial, and
examination of their gastrointestinal tracts showed no indica-
tion of accumulation of kaolin along the gut or of tissue dam-
age. We concluded that kaolin could be used safely as a dietary
diluent in this study.

All diets were composed of gelatin (275 bloom; Fisher Sci-
entific), fishmeal (Sigma Chemical), and a reptile mineral sup-
plement (Reptocal). The four dietary treatments were designed
to span a range of dilution down to a diet with 50% inert
matter. The amount of gelatin relative to fishmeal was main-
tained at a 5.5 : 1 ratio, the highest proportion of fishmeal that
maintained consistency in diet texture and stability for all four
diets. The gelatin and fishmeal portions of all diets were as-
sumed to have equivalent digestibilities because the diluent did
not create structural barriers (i.e., in the manner of cell walls
or lignin). The energy and nitrogen concentrations of these
diets reflect their percent dilution (Table 1). The energy and
nitrogen concentrations of all diets fall within the range of
composition of common aquatic plants in the natural diet of
T. scripta (Bjorndal 1991; Bjorndal and Bolten 1993). All diets
were colored with red food coloring to stimulate feeding and
to increase the visibility of orts (remaining food) to be collected.

A repeated-measures design was used to examine the intake
of turtles on each of the four diets. Turtles were randomly
assigned to a sequence of the four diets. Each phase consisted
of an initial 5-d acclimation period, during which each turtle
received the next experimental diet in its sequence. The accli-
mation period was followed by a 10-d experimental period,
during which intakes were measured and used to analyze each
turtle’s response to a given diet. The juvenile and adult trials
were conducted sequentially. The juvenile trial was conducted
from June 1 to August 1. The adult trial began August 2 and
ended October 2.

Turtles were fed ad lib. for 4 h each day (0900–1300 hours
for juveniles; 1000–1400 hours for adults). Following feeding,
all remaining food (orts) was collected and dried at 607C.
Weighed subsamples were taken from each diet daily, allowed
to soak in water for the 4-h feeding period, and then dried
with the orts to determine the dry mass of each diet. The dry
mass determined in this manner was used to calculate the dry
mass of food offered.

Orts and daily diet samples were weighed following drying.
Daily dry mass intake for each turtle was then calculated as

Intake 5 [WM offered

#(DM sample/WM sample)]2 DM orts,

where WM offered is the wet mass of food placed in an indi-
vidual’s tank, DM sample is the dry mass of the diet sample,
WM sample is the wet mass of the diet sample, and DM orts
is the dry mass of the remaining food, all expressed in grams.
Treatment intakes were calculated on a mass-specific basis, av-
eraged over the 10-d period for each turtle, and expressed as
grams per kilogram body mass per day. The densities of all
four diets were determined volumetrically. Densities did not
differ among diets, indicating that an equal mass of each diet
occupies an equal volume in the gastrointestinal tract of turtles.
Therefore it is expected that analyses based on diet volume
would yield the same results as presented here for diet mass.

Diets were analyzed for organic matter, energy, and nitrogen
content. Dry mass percentages were measured by drying sam-
ples of each diet at 1057C. Following dry mass measurements,
samples were ashed in a muffle furnace at 5007C for 3 h to
determine the percentage of organic matter. The energy content
of the diets was determined using a standard bomb calorimetry
procedure (Parr Instrument 1960). The concentration of ni-
trogen was measured using a block digester (Gallagher et al.
1975) and an automated Technicon analyzer (Hambleton
1977). More detailed methodology is in McCauley (1997).

Statistical Analysis

The effect of treatment on mean daily dry mass intake, mean
daily energy intake, and mean daily nitrogen intake was ana-
lyzed for both size classes of turtles using separate repeated-
measures general linear model (GLM) procedures with size class
as a designated between-subjects effect. Energy and nitrogen
intakes were determined on the basis of the analyzed diet con-
centrations of both nutrients, as these concentrations deviated
slightly from their dietary percent dilution (Table 1). The re-
peated measures GLM allowed us to test for the effects of dietary
dilution on dry mass intake, energy intake, and nitrogen intake
and examine how the response differed between the two size
classes of turtles. All statistical analyses were conducted using
SPSS statistical software (SPSS 1996). Individual treatment ef-
fects on intake were analyzed using within-subjects simple con-
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Table 2: Mass-specific intakes for juveniles and adults on four experimental diets

Intake

Diet Dilution (%)

0 15 35 50

Juvenile ( ):n 5 8
Dry mass .. . . . . 2.9A 5 1.3 2.8A 5 .52 3.6A,B 5 .13 5.9B 5 .21
Energy ... . . . . . . 62.0A 5 27 52.0A 5 10 48.0A 5 18 56A 5 20
Nitrogen ... . . . . .46A 5 .20 .39A 5 .07 .36A 5 .13 .42A 5 .15

Adult ( ):n 5 4
Dry mass .. . . . . .86A 5 .46 1.1A 5 .36 1.8A,B 5 1.2 2.9B 5 1.7
Energy ... . . . . . . 19A 5 10 21A 5 7 25A 5 18 31A 5 18
Nitrogen ... . . . . .14A 5 .07 .16A 5 .05 .18A 5 .01 .21A 5 .01

Note. Values are . Dry mass and nitrogen intakes are expressed as grams per kilogram of body mass permean 5 SD

day. Energy intake is kiloJoules per kilogram of body mass per day. Within rows, means that share the same letter are

not significantly different.

trasts. The difference in mass-specific intake for juveniles and
adults was compared with a between-subjects contrast. Ex-
pected mass-specific metabolic rates were calculated for each
individual using the equation

3 214cm O /(g # h) 5 0.066 g ,2

where metabolic rate is measured as the mass-specific hourly
volume of oxygen consumption (Bennett and Dawson 1976).

Results

Diet had a significant effect on mass-specific dry mass intake
(repeated-measures GLM; ; ; ). Asdf 5 3 F 5 11.527 P ! 0.001
predicted, intake increased with increasing dietary dilution (Ta-
ble 2). No diet by size class interaction was found in this test,
indicating that adults and juveniles respond to dilution in the
same way ( ; ; ).df 5 3 F 5 0.797 P 5 0.505

Simple contrasts were used to compare mean mass-specific
dry mass intakes for each diet. Contrasts compared intakes for
the three less dilute diets to the diet diluted with 50% inert
matter, the most dilute diet. Intakes on the two least diluted
diets (with 0% and 15% kaolin, respectively) were significantly
lower than intakes on the most dilute diet (with 50% kaolin).
Dry mass intakes for the two most dilute diets (with 35% and
50% kaolin, respectively) were not significantly different (Table
2).

Size class had a significant effect on mass-specific dry mass
intake on all experimental diets ( ; ; ).df 5 1 F 5 14.72 P 5 0.003
Juveniles maintained consistently higher per gram dry mass
intakes than adults, with mass-specific intakes being 2–3.4 times
higher for juveniles than adults (Table 2).

Mean daily energy intake did not differ significantly among
diets (repeated-measures GLM; ; ; ;df 5 3 F 5 0.569 P 5 0.640
Table 2). The increases in dry mass intake were therefore ad-

equate to maintain a constant level of energy gain. Energy intake
was significantly different between the two size classes (df 5

; ; ). The mass-specific energy intakes of1 F 5 15.391 P 5 0.003
juveniles were 1.8–3.3 times higher than for adults (Table 2).
The expected mass-specific metabolic rates for juveniles aver-
aged 2.7 times the mean expected metabolic rates for adults.

Mean daily nitrogen intake did not significantly differ among
treatments (repeated measures GLM; ; ;df 5 3 F 5 0.400 P 5

; Table 2). Juveniles and adults differed significantly in0.754
their mean daily nitrogen intakes ( ; ;df 5 1 F 5 16.986 P 5

). Mass-specific nitrogen intakes by juveniles were 2–3.30.002
times higher than nitrogen intakes by adults (Table 2).

Discussion

Nutrient Dilution and Ontogenetic Dietary Shift

Juvenile and adult Trachemys scripta did not differ significantly
in their response to dietary dilution. Both size classes were able
to maintain constant energy and nitrogen intakes by increasing
their dry mass intake in response to decreasing nutrient con-
centrations in experimental diets, and the responses of the two
size classes paralleled each other. Higher mass-specific meta-
bolic demands resulted in consistently higher mass-specific dry
mass and energy intakes by the juvenile turtles. Juveniles main-
tained mass-specific dry mass intakes up to 3.4 times those of
adults. However, the interaction between size class and intake
was not significant, indicating that the two size classes do not
differ in their ability to compensate for dietary dilution.

The experimental diets span a wide range of energy concen-
trations. A comparison of the energy content of the experi-
mental diets (Table 1) to two common aquatic plants, Hydrilla
verticillata (15.1 kJ g21 DM) and Spirodela polyrhiza (18.1 kJ
g21 DM) (Bjorndal and Bolten 1992), indicates that the energy
content of these two aquatic plants falls between the energy
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Table 3: Comparison of energy gains for adult Trachemys scripta on different
diets

Diet
Energy Gain
(kJ kg21 body mass d21) Reference

Spriodela polyrhiza . . . . . . 18.1 Bjorndal 1991; Bjorndal
and Bolten 1992

Hydrilla verticillata . . . . . . 15.1 Bjorndal and Bolten
1992

Tenebrio larvae .. . . . . . . . . . 157 Bjorndal 1991
Experimental diets .. . . . . 18.0–29.0 This study

Note. Energy gains on experimental diets assume 94% energy digestibilities, the upper range of

energy digestibilities for reptiles (Zimmerman and Tracy 1989).

concentrations of the diets diluted with 15% and 35% kaolin,
respectively. Slider turtles consume both Spirodela sp. (Marc-
hand 1942; Auth 1975; Hart 1983; Parmenter and Avery 1990)
and H. verticillata (S. J. McCauley and K. A. Bjorndal, personal
observation).

Digestibility was not measured for the experimental diets.
Digestibility of the diets was assumed to be high because gelatin
and fishmeal are very digestible and because the diluent did
not form mechanical barriers that might lower digestibilities.
If energy digestibilities are assumed to be 94%, which is the
upper range of energy digestibility reported in a reptile (sum-
marized in Zimmerman and Tracy [1989]), energy gains for
the adult turtles on the experimental diets span a range quite
close to energy gains reported for adult T. scripta on S. polyrhiza
and H. verticillata and well below energy gains on a carnivorous
diet of Tenebrio larvae (Table 3). The extremely high energy
gains on Tenebrio larvae probably reflect their high lipid con-
centration. No comparable data exist for juvenile T. scripta.
However, in another freshwater turtle species (Pseudemys nel-
soni, which is in the same subfamily as T. scripta), juveniles
consuming S. polyrhiza had energy gains comparable to the
juveniles in this study on the experimental diets: 53 kJ kg21

body mass d21 for P. nelsoni on S. polyrhiza (Bjorndal and
Bolten 1992) and 51.3 kJ kg21 body mass d21 for T. scripta on
the experimental diets. Adult P. nelsoni feeding on S. polyrhiza
also had energy gains (12 kJ kg21 body mass d21; Bjorndal and
Bolten 1992) similar to that of adult T. scripta in this study.
Thus, the energy gains reported for juvenile P. nelsoni may give
us an approximation of energy gains in juvenile T. scripta. With
this assumption, it appears that the energy concentrations of
plants in the diet of slider turtles fall within the range in which
both juveniles and adults are able to compensate for variations
in energy concentrations and maintain constant energy gains.
If juveniles and adults differ in their capacity to compensate
for dietary dilution by increasing intake to maintain constant
energy gains, it occurs well below the energy concentrations of
at least some of the common aquatic plants in the diets of both
adult and juvenile sliders.

Nitrogen concentrations were higher in experimental diets
(Table 1) than in either hydrilla (3.1% DM) or S. polyrhiza
(5.1% DM) (Bjorndal and Bolten 1992). Estimated nitrogen
gains in this study were also higher than reported nitrogen
gains for adult T. scripta on herbivorous diets, although
lower than on a carnivorous diet (Bjorndal 1991; Bjorndal
and Bolten 1993). Consequently, we cannot determine the
role of dietary nitrogen concentration in the ontogenetic
dietary shift of T. scripta. However, Avery et al. (1993) ex-
amined the role of dietary crude protein concentrations
(5nitrogen ) on ingestion rates in ju-concentration# 6.25
venile T. scripta of approximately three times the mass of
the turtles used in this study. They found that, whereas crude
protein concentrations alone did not have significant effects
on ingestion rates, there was a significant interaction be-
tween crude protein content and temperature. Temperature
and intake were positively correlated, and the rate of increase
in intake between 287C and 347C was positively affected by
dietary protein concentrations. At any given temperature,
crude protein did not affect intake. Their results suggest
that variations in nitrogen concentrations in our experi-
mental diets did not affect intake given that all turtles were
maintained at the same temperature.

Avery et al. (1993) did find that protein concentration could
affect growth rates. In their study, turtles fed a 10% crude
protein diet (the lowest protein concentration tested) grew
more slowly than turtles fed on either a 25% or 40% crude
protein diet. These results suggest that above some critical level
of protein intake growth is not affected and additional protein
consumed is converted to glucose to fuel energetic demands.
The most dilute diet used in our experiment (50% kaolin) had
a crude protein concentration of 45%, which is higher than
the crude protein concentration of any of the diets used by
Avery et al. (1993), suggesting that the protein concentrations
of our diets would not produce differential growth rates or
affect intake rates.

The ability of small T. scripta in this study to maintain con-
stant energy intakes throughout a wide range of dietary dilution
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suggests that they are capable of utilizing low-quality diets (en-
ergetically similar to plant material) efficiently. The parallels
between juvenile and adult responses to decreasing diet quality
in terms of energy and nitrogen indicate that, at these levels
of dilution, large body size does not confer an advantage to
subsisting on low-quality diets. Although it does not appear
that the relationship between dietary energy concentrations and
small body size is a critical factor in the ontogenetic dietary
shift, the role of body size more generally is still unknown.

Several alternative hypotheses could explain the observed
ontogenetic dietary shift, and the underlying selection pressures
may affect juveniles, adults, or both. Juveniles may require
higher concentrations of nutrients, such as calcium, than are
typically found in plant material. These requirements may com-
pel juveniles to adopt a carnivorous diet despite their ability
to meet their energetic requirements on an herbivorous diet.
Alternatively, perhaps neither juveniles nor adults are com-
pelled to adopt their respective diets. Dietary differences may
simply reflect change in the profitability of each diet as the
costs of active foraging increase with body size. Juveniles may
be capable of subsisting on plant-based diets but may maximize
their net gains by pursuing and consuming invertebrate prey,
whereas adults maximize net energetic gains by avoiding the
costs of pursuing active prey and concentrating on consuming
abundant plant material. Finally, the pressures driving this shift
may be affecting large turtles rather than small. Whereas large
body size results in higher total energy requirements, the costs
of pursuing active prey increase with body size. These energetic
factors, in conjunction with differences in the abundance and
distribution of plant resources, as compared to animal prey,
may force adults to adopt herbivorous foraging habits.

The possible role of prey distribution in driving a shift toward
herbivory in the deep-water-dwelling adults requires further
testing and should be examined by sampling invertebrates in
these microhabitats. One test of particular interest would be to
examine how prey distributions correlate with the extent or
timing of ontogenetic dietary shifts. Hart (1983) found a dietary
shift in T. s. elegans in southern Louisiana that was more gradual
than a similar diet shift described in T. s. scripta in South
Carolina (Clark and Gibbons 1969). If the distribution of in-
vertebrate prey plays a role in forcing a dietary shift in large
turtles, the timing of this transition might differ in ways that
relate to invertebrate distributions in these habitats, with a more
gradual transition reflecting a more even distribution of in-
vertebrate prey. The total abundance of plant material relative
to invertebrate prey might also be a factor driving large turtles
to an increased reliance on herbivory. Throughout its range, T.
scripta is associated with habitats abundant in aquatic vegeta-
tion (Moll and Legler 1971; Ernst and Barbour 1989; Parmenter
and Avery 1990). The abundance of aquatic invertebrates may
not be sufficient for large turtles to meet their high total energy
requirements, causing adults to rely on the more abundant
plant material in their habitat.

Implications for Herbivory in Reptiles

The observation that herbivory was rare in unspecialized lizard
species with body masses less than 100 g and more common
in species larger than 100 g as adults led to the hypothesis that
large body size both required and permitted an herbivorous
diet (Pough 1973; Wilson and Lee 1974). It was predicted that
the energetic considerations that prevented small adult lizards
from being herbivorous would result in the juveniles of “her-
bivorous” species relying on carnivory to meet their energetic
requirements (Pough 1973). These hypotheses have been ex-
tended to explain similar dietary shifts in several emydid turtles
including Graptemys pseudogeographica (Moll 1976), Chrysemys
picta (Ernst and Barbour 1989), and T. scripta (Clark and Gib-
bons 1969; Hart 1983; Parmenter and Avery 1990). Our results
neither confirm nor reject the hypothesis that large body size
requires adult T. scripta to be herbivorous. Our data do, how-
ever, demonstrate that small turtles are capable of processing
large volumes of low-quality diets to maintain constant energy
intakes. This result suggests that, as long as digestibilities are
unaffected by body size, small body size is not a constraint to
herbivory.

Bjorndal (1997) outlined three mechanisms by which small
reptiles might be able to meet their high mass-specific energy
demands on nutritionally dilute herbivorous diets. Two pro-
posed mechanisms—increased diet selectivity and the ingestion
of smaller particles—appear to be important in enabling small
reptiles to utilize plant material because they result in higher
digestibilities of the diet. The ability of a number of small
herbivorous reptiles, including a juvenile emydid turtle, to
maintain high digestibilities while consuming large volumes of
plant material (Mautz and Nagy 1987; Bjorndal and Bolten
1992) suggests that body size in reptiles need not be a factor
in determining digestibilities of plant material. Increased pas-
sage rate, often a product of selecting higher body temperatures,
is a third mechanism by which small reptiles might be able to
meet high mass-specific metabolic demands on low-quality di-
ets (Bjorndal 1997). Increased body temperatures may not,
however, be a prerequisite of increased passage rates among
juvenile reptiles (Troyer 1984; Mautz and Nagy 1987). Although
we did not directly measure passage rates, juveniles daily proc-
essed significantly higher volumes of food on a mass-specific
basis than did adults, suggesting that relatively high passage
rates may have allowed juveniles to maintain constant energy
gains on diets of varying quality.

Species that undergo ontogenetic dietary shifts provide an
ideal system in which to examine the pressures affecting diet
selection at different body sizes. Our results suggest that small
body size does not limit the ability of reptiles to compensate
for nutritionally dilute diets. Large individuals might be forced
to adopt herbivory because of a combination of factors in-
cluding the distribution and abundance of animal prey. Con-
sequently, we would predict that small reptiles would be most
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likely to be herbivores under conditions of low prey densities
or where factors independent of body size increase the costs
of capturing active prey.
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