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1.  INTRODUCTION

Somatic growth dynamics are an integrated re -
sponse to a wide range of parameters at the levels
of the individual (e.g. nutrition, health, differential
investment in growth and reproduction), population
(e.g. density, demography), and ecosystem (e.g. re -
source availability, climate). Changes in any of these
parameters and/or interactions among parameters
can have direct or indirect effects on somatic growth.
Because growth rates can be sensitive indicators of
changes at these 3 levels, understanding the sources
of variation in growth rates is critical to improve their

use as indicators of population, demographic, and
environmental changes.

Growth rates of sea turtles are excellent models for
demographic and environmental indicators because
sea turtles are long-lived, highly migratory mega-
consumers. Green turtles Chelonia mydas, logger-
heads Caretta caretta, and hawksbills Eretmochelys
imbricata spend decades in neritic habitats growing
to sexual maturity. During this immature period, indi-
viduals may move 100s to 1000s of km among forag-
ing grounds in a series of developmental migrations
(Musick & Limpus 1997, Meylan et al. 2011). Growth
rates of these 3 species measured over decades
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revealed the widespread effects of an ecological
regime shift on sea turtles from 3 different trophic
levels in the West Atlantic region beginning in the
late 1990s (Bjorndal et al. 2017).

Many studies of sea turtle somatic growth have
been conducted based on a number of analytical ap -
proaches (Chaloupka & Musick 1997, Avens & Snover
2013). Sea turtle growth rates are characterized by
high variation, much of which remains unexplained
(Balazs & Chaloupka 2004, Braun-McNeill et al. 2008,
Patrício et al. 2014, Colman et al. 2015, Bjorndal et al.
2017). This heterogeneity might be a function of im-
portant predictors or covariates which could provide
further insights into sea turtle growth dy namics. Un-
derstanding the drivers of variation in growth rates is
ever more critical as sea turtle populations recover, in-
creasing density-dependent effects; as marine re -
sources upon which sea turtles depend are degraded;
and as climate change affects ecosystem processes.
As models are improved, sources of this variation are
better understood and predictions of the effects of
 climate change, emerging diseases, and population
abundance, among other factors, are enhanced.

All previous sea turtle growth models of which we
are aware have focused on the mean or expected
growth rate. This has been a common mathematical
approach—the mean field theory—in ecological and
evolutionary sciences in which the behavior of the
mean is modeled without incorporating variance
(review in Violle et al. 2012). In recent years, distrib-
utional regression or ‘going beyond the mean’ (Kneib
2013, Stasinopoulos et al. 2018)—in which modeling
is not restricted to the mean of the response variable,
but extended to other summary parameters of the
response distribution (e.g. variance, skewness, and
kurtosis)—has received greater emphasis (DeCarlo
et al. 2015, Gilman et al. 2016, Silbersdorff et al.
2018). This approach models both the response mean
and variance as a function of covariates and can yield
important new observations, as demonstrated in re -
cent papers. For example, Campbell et al. (2012)
found that population dynamics of Eurasian beavers
Castor fiber were more influenced by climate compo-
nents describing variance than by those describing
mean values. For polar bears Ursus maritimus, Trot-
ter et al. (2013) concluded that including variance
sensitivities with mean stochastic growth rate and its
sensitivities yielded a substantially more complete
understanding of population dynamics.

Given the number of biotic and abiotic factors that
can affect growth in individual turtles, this modeling
approach should yield important insights into growth
dynamics in foraging aggregations of sea turtles. We

used distributional regression modeling to evaluate
green turtle somatic growth dynamics for both the
mean and variance of the growth response as a func-
tion of covariates. We analyzed a 39 yr (1979−2017)
data set from a capture−mark−recapture study of
green turtles in the southern Bahamas. We illustrate
how distributional regression can improve our under-
standing of variation in growth dynamics in sea
 turtles and thus improve the use of growth rates to
interpret population, demographic, and ecological
changes. Specifically, we addressed what stimulates
sea turtles to emigrate from foraging grounds in
response to changes in body size and population
density. Cues that initiate emigration during devel-
opmental migrations are key for understanding these
movement patterns and resource use, particularly
where green turtle populations are increasing (Bjorn -
dal et al. 2000, Meylan et al. 2011, Christianen et al.
2014, Lacey et al. 2014).

2.  MATERIALS AND METHODS

2.1.  Study site, data collection and preparation of
data set

This study is part of a long-term study of the biol-
ogy of immature green turtles in Union Creek Re -
serve (UCR; 21.178° N, 73.578° W) on the north coast
of Great Inagua, the southernmost island in The
Bahamas. In The Bahamas, the term ‘creek’ is ap -
plied to saltwater bays, not freshwater streams, as in
some other countries. UCR is part of the Bahamas
Protected Areas system managed by the Bahamas
National Trust (BNT), and green turtles are protected
by legislation that is well-enforced by BNT wardens.
UCR is ~20 km2 in area, is surrounded by and in -
terspersed with mangroves, and has meadows of sea-
grass Thalassia testudinum, the primary diet plant of
green turtles in the Greater Caribbean (Bjorndal
1997). UCR can be divided into 2 areas: the Upper
Sound and the Lower Sound. The Lower Sound is
characterized by shallower water and Thalassia
meadows that show more signs of stress (brown leaf
tips and narrower leaf blades) compared to the
Upper Sound. The disease fibropapillomatosis that
may affect growth rates in green turtles (Chaloupka
& Balazs 2005) has not been observed in UCR.

Immature green turtles enter UCR and then emi-
grate within a few years to other habitats in deeper
waters throughout the Greater Caribbean prior to the
onset of sexual maturity. Green turtle aggregations
in UCR are mixed stocks derived from several rook-
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eries in the Atlantic, based on analyses of mtDNA
sequences (Bjorndal & Bolten 2008).

Each year during a single survey interval, green
turtles were caught throughout the study area by
diving from the bow of a motorboat following a brief
chase. We used the number of turtles captured each
year (Fig. S1 in the Supplement at www.int-res.com/
articles/suppl/m616p185_supp.pdf) as an index of
relative density of turtles in UCR as in Bjorndal et al.
(2000) and later supported by Bjorndal et al. (2005).
We are confident that the number of turtles captured
during each survey period is a reliable estimate of
relative density because of the consistency of annual
capture effort. Throughout our study, we only used
one capture method, only 3 people ran the capture
boat, and only 5 people (including 2 of the boat
 operators) dived on turtles. Number of capture days
varied between 5 and 10 among years to account for
variation in weather conditions, and was not related
to number of turtles captured (Spearman correlation,
rho = 0.225, p = 0.196). In addition, based on capture-
mark-recapture analyses for years 1979 through 2001
except 1981, 1995, 1999 when no field studies were
undertaken (Bjorndal et al. 2005), relative mean den-
sity index is closely related to a Horvitz-Thompson
type estimate of abundance (linear regression, p <
0.0001, R2 = 0.804, n = 20; Fig. S2).

Turtles were tagged with flipper tags bearing an
identification number. Straight carapace length (SCL,
±0.1 cm) was measured with anthropometer calipers
(GPM model 101) from the anterior midpoint of the
nuchal scute to the posterior tip of the longer of the
pair of posterior marginal scutes (Bolten 1999). All
measurements were made by A.B.B. and recorded by
K.A.B. The precision of SCL, determined as mean
discrepancy between repeated measurements, was
0.046 cm (Bjorndal & Bolten 1988). No negative
growth rates were observed. Sex of 111 turtles cap-
tured in 1988 was identified by collecting blood sam-
ples and measuring circulating levels of testosterone
(Bolten et al. 1992).

We used a mixed longitudinal sampling design
(sampling with partial replacement). Of the 727 in -
dividual turtles with growth increments, 303 (42%)
were recaptured more than once. Absolute growth
rates were derived from the capture-mark-recapture
profiles for individual turtles captured from 1979
through 2017. For each growth increment, the fol-
lowing covariates were included: turtle ID, mean
SCL (mean of initial and recapture SCL, in cm), mean
year (year of mean date of initial and recapture date),
mean density index (mean of initial and recapture
density index), duration between capture and recap-

ture in years (number of days elapsed between initial
capture and recapture divided by 365.25 d), location
(initial capture in Lower Sound or in Upper Sound),
and sex (female, male, unknown).

To avoid the bias introduced by short durations
between capture and recapture, we used the stan-
dard 330 d minimum cutoff that has been used for
many years in sea turtle studies (Chaloupka & Lim-
pus 1997, Bjorndal et al. 2017). Successive growth
increments for individual turtles below the 330 d
limit were combined to exceed the minimum dura-
tion when possible.

All applicable international, national, and/or insti-
tutional guidelines for the care and use of animals
were followed. All procedures were performed in
compliance with the Institutional Animal Care and
Use Committee at the University of Florida.

2.2.  Statistical modeling approach

We used a generalized additive mixed model for
location, scale and shape (GAMMLSS; Stasinopoulos
& Rigby 2007), which is a form of structured additive
distributional regression (Klein et al. 2015). The
GAMMLSS approach allows the simultaneous mod-
eling of (1) the mean (or expected) somatic growth
rate response as a function of covariates and (2) the
variance or dispersion of the same response, also as a
function of informative covariates. We used Bayesian
inference implemented with the Stan computation
engine (Stan Development Team 2016) with NUTS
sampling (Carpenter et al. 2017) via the ‘brms’ pack-
age for R (Bürkner 2017) to fit the GAMMLSS model
structure.

The GAMMLSS regression models comprised (1)
an identity link, (2) Student’s t model likelihood to
minimize outlier effects on parameter estimates, and
(3) thin plate regression spline smooths (Wood 2006)
to model any nonlinear functional form between mean
somatic growth rates and the covariates described
above. The somatic growth rate variance was jointly
modeled as a function of covariates. We also included
turtle ID as a random effect (random intercepts only)
to account for any turtle-specific heterogeneity due
to the variable number of growth rate measurements
recorded for each turtle.

The GAMMLSS models implemented in the Bay -
esian framework used weakly informative regulariz-
ing priors (Gelman et al. 2008, Park & Casella 2008)
with posterior samples sourced from 4 chains and
25 000 iterations after a warmup of 2500 iterations.
Bayesian GAMMLSS regression model fit was dis-
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played using the ‘ggplot2’ package for R (Wickham
2016) and then evaluated using graphical posterior
predictive checking procedures (Gelman & Hill 2007,
Gelman et al. 2014) via the ‘bayesplot’ package for R
(Gabry 2016).

To determine if accounting explicitly for variance in
growth rates improved the fit to the data and model
inference about the mean growth rate dy namics, we
dropped the variance covariates from our GAMMLSS
model to create a Bayesian GAMM mean-response-
only model. We used leave-one-out cross-validation
(LOOIC) and K-fold cross-validation (KFOLDIC) to
compare the GAMMLSS fits to the simpler GAMM
model (fitted using the ‘gamm4’ package for R; Wood
& Scheipl 2014). LOOIC is an approximate
method and is known to be prone to false posi-
tives when applied to more complex hierarchical
models (Vehtari et al. 2017, Gabry et al. 2019). So
in addition to LOOIC, we used the computation-
ally more intensive but more reliable KFOLDIC
(10-fold cross-validation with 4 chains) to assess
whether the same conclusions were drawn about
model comparison based on the approximate
LOOIC metric (Vehtari et al. 2017, Gabry et al.
2019). Finally, the selected model was thoroughly
evaluated using a suite of posterior predictive
check tests, which is the most informative means
for evaluating Bay esian model fit (Vehtari et al.
2017, Gabry et al. 2019). All analyses were con-
ducted in R version 3.4.2 (R Core Team 2017).

2.3.  Assessing causes of shifts in variance

To evaluate the shifts in variance that were re -
vealed by the GAMMLSS analyses, we assessed
3 predictions, described in Table 2 and Sections
3.4, 3.5 and 3.6. To determine if turtles that
 emigrated at different sizes were growing at dif-
ferent rates before emigration, we identified
departure size (= SCL at last sighting) for all
recaptured green turtles last seen in 2014 or
before (Fig. S3). We are confident that turtles
left soon after the last capture because the
majority (80.3%) of all recapture intervals was
about 1 yr (Fig. S4). We can also be confident
that all turtles captured in 2014 or before emi-
grated by the end of our study (2017) because
98.8% of all recapture intervals were 3 yr or less
(Fig. S4). Annual survival prob ability of green
turtles in UCR is high (0.891; Bjorndal et al.
2003), so green turtles that are no longer in the
study area have usually emigrated, not died.

3.  RESULTS AND DISCUSSION

3.1.  GAMMLSS model

Our final data set had 1176 growth increments for
727 individual green turtles captured from 1979
through 2017. The number of growth increments for
individual turtles varied from 1 to 9 with a mean
(±SD) of 1.6 ± 0.9. Growth rates from all growth in -
crements varied from 0.1 to 11.0 cm yr−1 with a mean
of 4.4 ± 2.0 cm yr−1. SCL values from all turtle cap-
tures (n = 2689; Fig. 1a) varied from 25.3 to 84.3 cm,
and mean SCL values for all growth increments (n =
1176; Fig. 1b) ranged from 30.2 to 82.1 cm.
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We tested a series of models with different combi-
nations of covariates for both the mean response and
the variance component. The best model had 6 fixed
effect covariates for the mean growth response com-
ponent (mean SCL, mean year, mean density index,
duration, location, and sex) and 1 random effect
(individual turtle). For the variance component, the
best model had 3 covariates: mean SCL, mean year,
and mean density index (Table 1). The model state-
ment is:
brm(bf(gr.scl~s(scl.mean)+s(mean.year,k=3)
+s(duration,k=3)
+s(density.mean,k=3)+location+sex+(1|Turtle),
sigma~s(scl.mean)+s(mean.year)+s(density.mean)),
family=student(link=‘identity’).

This model explains 69.9% of the model deviance
(Bayesian R2; Gelman et al. 2017) and is a good fit
to the data based on graphical posterior predictive
checking procedures (Fig. S5). The convergence
diagnostics of effective posterior sample size (921 to
90 000) and the Gelman-Rubin statistic (Rhat = 1.00
for all covariates) indicated convergence of the model
(Gelman & Hill 2007).

The distributional regression model (GAMMLSS)
that accounts for growth variability had a substan-
tially improved fit to the data compared to the mean-
response-only model (GAMMLSS LOOIC = 3970.38,
GAMM LOOIC = 4018.45; GAMMLSS KFOLDIC =
3980.20, GAMM KFOLDIC = 4016.75). There were
no differences in the significance of the covariates
between the 2 models. The better fit indicates the
advantage of modeling both the mean and variance
of the response distribution. More important, are the
new insights that can be gained from this approach,
as discussed below (Table 2 contains summary and
statistical test results).

We only present the results of the distributional re-
gression model (Figs. 2 & 3, Table 1). Graphical results
for mean responses (Figs. 2a,c,e & 3a,b) are plotted
with the original response scale (cm SCL yr−1) on the
y-axis to facilitate evaluation of covariate effects.
Graphical results for variance responses (Fig. 2b,d,f)
are plotted on a centered smoothed GAMMLSS func-
tion scale to allow direct comparisons of effect strength
among covariates. Rug plots above the x-axes allow
rapid assessment of  relative sample size distribution
for the continuous covariates.
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Parameters Estimate SD 95% Credible
interval

Fixed effects mean terms
Straight carapace length 1.28 1.03 0.10−4.13
Year 6.48 6.34 0.84−23.13
Relative density index 4.72 5.78 0.13−19.89
Duration 7.60 7.29 0.49−25.88

Fixed effects variance terms
Straight carapace length 1.08 0.87 0.07−3.29
Year 1.25 1.11 0.19−4.35
Relative density index 2.10 1.08 0.75−4.78

Random effect
Individual turtles 0.93 0.05 0.82−1.03

Table 1. Green turtle growth dynamics model results for
fixed continuous effects and random effect. All parameters
are significant (Bayesian 95% credible interval does not 

include zero)

Model results Predictions Test and statistical results Conclusions

Variance of GR de-
creases with increas-
ing SCL (Fig. 2b)

Lower variance in larger turtles is 
due to turtles that emigrate at 
smaller sizes not being evenly 
distributed along the growth rate 
continuum

Turtles that emigrate at smaller sizes (<55 cm) 
grow significantly more slowly between 31 and 
54 cm SCL than do turtles that leave at larger 
sizes (>55 cm)
Mean ± SE GR: small 4.9 ± 0.1; large 5.3 ± 0.1
Significant: t-test, t = -2.993, df = 544.3, p = 0.003

Prediction 
supported

Variance of GR de-
creases with 
increasing relative 
density indexa (Fig. 2f)

As densities increase, larger turtles 
limit smaller turtles to lower 
quality foraging habitats, reducing 
variance in small turtles

Variance of small turtles decreases with 
increasing density
Variance of GR:  low density 3.33; 
high density 3.37
NS: F-test, F = 1.011; df = 175, 155; p > 0.05

Prediction not 
supported

Differential emigration in larger 
turtles:  slower growing turtles 
emigrate sooner

For large turtles, mean GR stays the same and 
variance decreases with increased density
Mean GR ± SE: lower density 3.5 ± 0.1; 
higher density 3.2 ± 0.1
NS: t-test, t = 1.984, df = 302.7, p > 0.05
Variances declined: low density 3.08; 
high density 1.24
F-test, F = 2.485; df = 192, 114; p < 0.0001

Prediction 
supported

aRelative density range between 66 and 110; range with sufficient sample size

Table 2. Summary of predictions regarding green turtle growth dynamics and emigration, tested based on results of distribu-
tional regression analyses. See Sections 3.4, 3.5 and 3.6 for discussion of predictions and results. GR: growth rate; SCL: straight 

carapace length; NS: not significant
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Fig. 2. Distributional regression model analysis (generalized additive mixed model for location, scale and shape; GAMMLSS)
for the 3 covariates used as both mean predictors (left side) and variance predictors (right side) for green turtle growth dynam-
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mated variance effects (b,d,f) is growth rate variance, centered and scaled. Solid curves are the smoothing spline fits condi-
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Based on our model, mean SCL, mean year, and
mean density all have significant effects on the mean
growth response (Fig. 2a,c,e, Table 1) and the vari-
ability in the growth response (Fig. 2b,d,f, Table 1).
Duration of growth increments, trimmed to a mini-
mum duration of 330 d, was a significant covariate,
but the high degree of uncertainty associated with
this parameter does not support confidence in this
effect. Location of first capture for each growth incre-
ment (Lower Sound vs. Upper Sound; Fig. 3a) did not
have a significant effect on growth rates.

3.2.  Sex effect

Most mark-recapture studies of green turtle aggre -
gations do not identify sex of immature turtles (Bjorn-
dal et al. 2017) and thus cannot assess sex-specific
growth. Studies of sex-specific growth in green tur-
tles have reported different results. On the Great
Barrier Reef, Australia, green turtles exhibited dis-
tinct sex-specific growth patterns, with females grow-
ing faster than males from about 62 to 65 cm curved
carapace length (Limpus & Chaloupka 1997). Goshe
et al. (2010) found significant sex-specific growth
functions in North Atlantic green turtles, but sex did
not have a significant effect on growth of immature
green turtles in the northwest Gulf of Mexico (Avens
et al. 2012).

Of the 111 turtles sexed in 1988 (65 females and 46
males), 96 were captured more than once and used in
our analyses; 7 females and 8 males were only cap-
tured once. For sex effects, our model indicates that
females (n = 108 growth increments) grow signifi-
cantly slower than males (n = 84 growth increments)
and turtles of unknown sex (Unk; n = 984 growth
increments). There was no difference between males
and Unk turtles (Fig. 3b). This significant difference
in mean response contradicts the results of Bolten et
al. (1992), who reported no effect of sex on growth
rates in this aggregation, but are the same as in
Bjorndal et al. (2000). However, Bjorndal et al. (2000)
questioned the biological significance of the results
for 2 reasons. First, the sample sizes of known-sex
turtles were small. Second, if the sex effect is real,
growth rates of Unk turtles (a mix of male and female
turtles) should fall between those of males and
females instead of being equivalent to the males
(Fig. 3b). The sex ratio (F:M) of 111 green turtles in
UCR was 1.4:1.0 in 1988 (Bolten et al. 1992), the only
year in which sex ratio was determined. Thus, the
effect of sex on growth rates for the UCR aggregation
should be interpreted with caution until additional
growth data for turtles of known sex are available.

3.3.  Year effect

The year effect on growth is a proxy measure of all
the environmental influences actually experienced
by the green turtles. The mean function of the re -
sponse distribution over time (Fig. 2c) shows rela-
tively stable growth rates until the late 1990s when
growth rates declined consistently until the present.
The decline since the late 1990s is similar to the pat-
tern exhibited by green turtles throughout the West
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Atlantic region, which was attributed to an ecological
regime shift in the Atlantic influenced largely by the
El Niño Southern Oscillation (ENSO) (Bjorndal et al.
2017). Bjorndal et al. (2017) supported this conclusion
by calculating annualized mean growth rates gener-
ated from their GAMM analysis and reported strong
correlations between the annualized mean rates and
both sea surface temperatures (SST) and the Multi-
variate ENSO Index (MEI). We did not repeat those
analyses because of our emphasis on exploring the
dispersion rather than the mean of the response
 distribution.

The variance of the response distribution was sig-
nificant (Table 1, Fig. 2d), indicating that one or more
environmental factors varied over the years and
affected growth rates either directly or indirectly.
Some optimal combination of environmental condi-
tions and green turtle density may have existed in
the late 1990s, yielding low variance when all turtles
were growing well. Before and after this period, sub-
optimal conditions may have yielded greater vari-
ance in growth rates when turtles exhibited differential
capacities to respond to the challenge(s). A greater
understanding of effects of environmental conditions
on the physiology of sea turtles would greatly im -
prove our ability to interpret variation in growth rates
and predict the effects of environmental changes on
sea turtle productivity.

3.4.  Body size effect

The mean response of decreasing growth rates
with increasing body size (SCL; Fig. 2a) is clear.
Almost all studies of sea turtle growth have reported
a significant effect of body size on growth (but see
Braun-McNeill et al. 2008), although the shapes of
the function vary (Chaloupka & Musick 1997). In
West Atlantic green turtle aggregations, growth
functions with increasing body size may be monoto-
nic declining (e.g. Bjorndal et al. 2000, Patrício et al.
2014) or nonmonotonic with highest growth rates at
relatively small sizes around 35 cm SCL (e.g. Kubis et
al. 2009) or at larger sizes around 50 to 55 cm SCL
(e.g. Kubis et al. 2009, Colman et al. 2015).

Importantly, we found that the variance also de -
creased with increasing body size (Fig. 2b). We pre-
dict that variance declines with body size because
turtles that emigrate from UCR at smaller sizes are
not evenly distributed along the growth rate contin-
uum. That is, turtles that grow at faster (or slower)
rates may tend to emigrate at smaller sizes, sub -
stantially reducing the variance in growth rates with

increasing size as the faster (or slower) growing tur-
tles are disproportionately removed from the aggre-
gation. We compared growth rates of turtles that left
UCR at departure sizes less than and greater than the
mean departure size (55 cm; Fig. S3): 46 to 55 cm SCL
(n = 434) and 56 to 65 cm SCL (n = 233), respectively.
For a fair comparison between these 2 groups, we
used growth increments over the same range of
mean SCL (31 to 54 cm SCL) with similar ranges of
years and relative densities because these 3 parame-
ters had significant effects on growth in our model.

Between 31 and 54 cm SCL, turtles that left UCR at
smaller sizes (46 to 55 cm SCL) grew significantly
slower (growth rate mean ± SD = 4.9 ± 1.9 cm yr−1)
than turtles that left at larger sizes (56 to 65 cm SCL;
5.3 ± 1.6 cm yr−1; for statistical results see Table 2).
The tendency for slower growing turtles to emigrate
at smaller sizes may result from turtles having the
ability to recognize and respond to a measure of
instantaneous nutritional well-being (Broekhuizen et
al. 1994, Roark et al. 2009). Those individuals that
recognize their poor nutritional state may leave to
seek better foraging habitats. This differential emi-
gration contributes to the decline in variance in
growth rates with increasing body size.

3.5.  Density effect

The mean response was a consistent decline in
growth rates with increasing density index (Fig. 2e),
probably due to increased competition for food
resources. Evidence for density-dependent effects on
growth rates has been presented for this aggregation
in an earlier study (Bjorndal et al. 2000). Density is a
significant driver that underscores the importance of
taking into account density-dependent effects on
demographic parameters as sea turtle populations
recover and population densities increase (Heppell
et al. 2003, NRC 2010).

The variance response function (Fig. 2f) suggests
lower variance at lower densities (20 to 50), but the
credible interval is wide at low densities because of
the small sample size, as indicated by the rug plot in
Fig. 2f. Thus, the function is not well determined at
low densities and requires cautious interpretation.

The 95% credible or uncertainty interval is nar-
rower from 57 to 110, the densities over which sam-
ple size is consistently high. The steady decline in
variance from the peak value at a density index of
66 to 110 is well supported, but somewhat surprising.
One might expect that variance would continue to
increase with increasing densities as turtles would
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have variable abilities to respond to greater com pet -
itive pressure.

We had 2 predictions for the cause of this decline.
First, because larger turtles sometimes exclude
smaller turtles from limited resources such as resting
areas (Thomson et al. 2015), we expected that vari-
ance in growth rates of smaller turtles would de -
crease with increasing density as they are forced into
a narrower range of sub-optimal habitats and that
variance of larger turtles would not change signifi-
cantly. Our second prediction was that the decline in
variance is a result of differential emigration in larger
turtles. We expected that the larger turtles with lower
competitive capacity and thus lower growth rates
would tend to emigrate sooner, decreasing the vari-
ance among larger turtles. To support this con-
tention, variance for larger turtles would need to
decrease and mean growth rates for larger turtles
would need to stay the same, or at least not decline as
much as the entire aggregation (Fig. 2e).

To test these 2 predictions, we compared the
means and variances in growth rates of small turtles
below the mean of 50 cm (30 to 50 cm SCL) and large
turtles (51 to 73 cm SCL) at low (57 to 70) and high
(93 to 110) relative densities. For small turtles at low
and high densities, the variances remained the same
(Table 2). For large turtles at low and high densities,
the mean growth rates remained the same and the
variances declined at high densities (Table 2).

Therefore, our first prediction, that competition
with larger turtles reduces the variance of smaller
turtles at higher densities is not supported because
variance of smaller turtles remained the same.
Although competition does not seem to be a major
driver in this instance, better understanding of com-
petition among foraging sea turtles would improve
our understanding of the interactions of emigration,
turtle density, and habitat quality. The extent to
which competition results from differential forag-
ing efficiency among individual turtles as seagrass
meadows are more heavily grazed, or to larger or
more dominant turtles forcing smaller or less domi-
nant turtles into lower quality habitats should be
evaluated. This distinction would provide insights
into the behavioral mechanisms driving competition
and thus changes in demographic parameters and
movement patterns.

Our second prediction—that the decline in vari-
ance is a result of earlier emigration in slow-growing
larger turtles—is supported. As slow-growing turtles
differentially emigrated earlier from the large size
class, the variance decreased but the mean growth
rates did not, despite the overall decrease in mean

growth rates at higher densities (Fig. 2e). The overall
decrease in mean growth rates at higher densities is
primarily the result of decreased growth rates in
smaller turtles (t-test, t = 3.204, df = 329, p = 0.002).

3.6.  Differential emigration

Differential emigration is an important driver of
somatic growth dynamics of green turtles in UCR.
We found that the decline in variance of growth rates
with increasing body size was a result, at least in
part, of slower growing turtles emigrating at smaller
body sizes than faster growing turtles. We also found
the decline in variance of growth rates with increas-
ing density index from 66 to 110 was caused, at least
in part, by slower growing larger turtles emigrating
sooner than faster growing turtles. Both of these find-
ings support the hypothesis proposed by Werner &
Gilliam (1984) in their review of the theoretical basis
for ontogenetic habitat shifts—that a species will
shift habitats to maximize growth rates. This slowing
of somatic growth rates has been suggested as a cue
used by immature loggerheads Caretta caretta to
shift from oceanic to neritic habitats (Bolten 2003).

The effects of differential emigration were only
revealed in our study through the distributional
regression approach that models the dispersion as
well as the mean of the response distribution. The
importance of differential emigration has not been
recognized because earlier studies of growth dynam-
ics evaluated only the mean growth rate response.
Differential emigration may well be important for
growth dynamics in other sea turtle aggregations
and for other demographic parameters, such as
 survival and sex ratios. Similar studies of growth dy -
namics in other sea turtle aggregations would be
valuable.

Our new insights into differential emigration and
the departure of green turtles from foraging grounds
are important for understanding sustainability of
grazing by green turtles on seagrass meadows,
which has become a critical issue (Lal et al. 2010,
Kelkar et al. 2013, Heithaus et al. 2014, Molina
Hernández & van Tussenbroek 2014). Green turtles
appear to be slow to leave foraging areas in response
to declines in seagrass biomass and productivity
(Williams 1988, Bjorndal et al. 2000, Lacey et al.
2014), which may result in overgrazing of seagrass
meadows (Fourqurean et al. 2010, Christianen et al.
2014). Identification of the cues that stimulate green
turtles to leave grazing areas is therefore central to
the management of green turtle populations that are
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recovering in many areas (Chaloupka et al. 2008,
Mazaris et al. 2017), and to the management of sea-
grass ecosystems that are in serious decline globally
because of anthropogenic threats (Orth et al. 2006,
Waycott et al. 2009, Grech et al. 2012).

Greater use of distributional regression modeling
approaches in studies of sea turtle growth are impor-
tant to extend our findings and reveal other drivers.
More research is needed to understand the inter -
actions between emigration and parameters, such as
nutritional status, body condition, growth rates, and
initiation of puberty (sensu Meylan et al. 2011), dur-
ing developmental migrations as well as the inter -
actions between environmental conditions and sea
turtle growth.
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Figure S1.  Number of green turtles captured each year (= relative density index) in Union Creek 
Reserve, Great Inagua, The Bahamas, from 1979 through 2017 
 
 

 
Figure S2.  Relationship between relative mean density index and Horvitz-Thompson type estimate 
of abundance (Ni) based on capture-mark-recapture analyses for years 1979 through 2001 except 
1981, 1995, 1999, when no field studies were conducted (Bjorndal et al. 2005).  Linear regression is 
significant; p < 0.0001, R2 = 0.804, n = 20 
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Figure S3.  Size distribution of departure sizes estimated from last SCL value for all green turtles 
recaptured before 2015, n = 629 
 
 

 
 
Figure S4.  Distribution of 1312 recapture intervals (years) for green turtles in Union Creek 
Reserve.  Number of intervals is placed above each bar and is greater than number of growth 
increments because intervals below the 330-day cut-off for growth increments are included 
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Figure	  S5.	  	  Results	  of	  three	  posterior	  
predictive	  check	  tests	  (Gelman & Hill 
2007, Gelman et al. 2014)	  for	  the	  model	  
fit	  summarized	  in	  Figs.	  2	  and	  3	  (in	  the	  
main	  article).	  
Top	  panel:	  	  Posterior	  predictive	  check	  

of	  the	  response	  variable.	  	  Dark	  teal	  
line	  shows	  the	  density	  curve	  
summarizing	  the	  observed	  data,	  
and	  the	  mass	  of	  lighter	  teal	  lines	  
shows	  the	  density	  curve	  overlay	  for	  
each	  of	  the	  25,000	  simulations	  of	  
the	  fitted	  GAMMLSS	  model	  shown	  
in	  Figs.	  2	  and	  3.	  	  The	  fitted	  model	  
makes	  realistic	  predictions	  of	  this	  
parameter.	  

Middle	  panel:	  	  Posterior	  predictive	  
check	  of	  the	  maximum	  response	  
variable.	  	  Solid	  teal	  line	  shows	  the	  
maximum	  growth	  rate	  of	  the	  
observed	  data,	  and	  the	  light	  teal	  
histogram	  summarizes	  the	  25,000	  
simulations	  of	  the	  expected	  
maximum	  for	  the	  fitted	  GAMMLSS	  
model	  shown	  in	  Figs.	  2	  and	  3.	  The	  
fitted	  model	  makes	  realistic	  
predictions	  of	  this	  parameter.	  

Bottom	  panel:	  	  Posterior	  predictive	  
check	  of	  the	  two	  key	  summary	  
parameters	  (the	  mean	  and	  
standard	  deviation).	  	  Solid	  teal	  
circle	  shows	  the	  summary	  
parameters	  for	  the	  observed	  data	  
and	  the	  mass	  of	  open	  teal	  circles	  
shows	  the	  summary	  estimates	  for	  
each	  of	  the	  25,000	  simulations	  of	  
the	  model	  fit	  shown	  in	  Figs.	  2	  and	  3.	  	  
The	  fitted	  model	  makes	  realistic	  
predictions	  of	  these	  summary	  
parameters.	  
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